If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-17=0
a = 8; b = 0; c = -17;
Δ = b2-4ac
Δ = 02-4·8·(-17)
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{34}}{2*8}=\frac{0-4\sqrt{34}}{16} =-\frac{4\sqrt{34}}{16} =-\frac{\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{34}}{2*8}=\frac{0+4\sqrt{34}}{16} =\frac{4\sqrt{34}}{16} =\frac{\sqrt{34}}{4} $
| 8(x+3)=4(x-7) | | -9b=621 | | 45/8+2=x/2 | | 5(2x—4)=6x—8 | | 3(-2x+-4)=-6x+12 | | 9-7u=72 | | 34+5x=8(3x-1)+4 | | j/23=7 | | -13(1-11)+14p=772 | | 3(-2x+-4)=6x+12 | | 3y-14=136 | | 8g+4(g+2)=56 | | x+76=65=180 | | 0.25(x+12)=3+0.75(x-20)* | | 12+x+12=42 | | 31y=620 | | 1/3x-4=3/4x+2 | | 5x+6=5x–4 | | 6x-10=7(x-8)+7 | | 0.3x-2=0.1x-1.5 | | 2x+1=(4x+9)/(3) | | -2(x+8)=-9+32 | | -2(4x-2)-3(4x+4)=-18x+2 | | 93+8y=180 | | 11=-8k+1-2k | | 1+k+5=1+2 | | 20r-11r=18 | | 5w=-75. | | –8d+8=–6d | | -30=-6(v+7) | | -6x10=7(x-8)+7 | | 2/3(6x-15)=2(4-3) |