If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2-100=100
We move all terms to the left:
8x^2-100-(100)=0
We add all the numbers together, and all the variables
8x^2-200=0
a = 8; b = 0; c = -200;
Δ = b2-4ac
Δ = 02-4·8·(-200)
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*8}=\frac{-80}{16} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*8}=\frac{80}{16} =5 $
| 3x^2+24x-11=19 | | 6(6+x)=120 | | 12x-16=-4(-6) | | 6(6+x)=180 | | 2x+5=3x-15=4x+10 | | (5x+2)=61 | | F(c+7)=4(c+7)+11 | | 3.2y-1+2y+5=180 | | 3(x-2=27 | | 5=24+3w | | -6.77+7.1z=-2.07+7.6z | | X2+6x-12=0 | | (2x-35)=16 | | 6+3w=-8+5w | | 150=6n+60 | | (8x-29)=180 | | 9.8t+9.13=-8.47+7.04+8.7t | | -3(x-6)+(4x+1)=7x-8 | | 5s+1=10+8s | | (8x-29)+67+38=180 | | 9c-4c-6=4+4c | | -3x(x-6)+(4x+1)=7x-8 | | 1+4n=3n-9 | | 2x(5x-7)=6x | | -r-10=10+5r+10 | | 5x-45=x | | -8g-6=-9g-10 | | 7n+2=-6+6n | | -4-8v=6-9v | | -5v=4-4v | | -2z=-z-4 | | 9+5y=6y |