If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+6x=0
a = 8; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·8·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*8}=\frac{-12}{16} =-3/4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*8}=\frac{0}{16} =0 $
| 3(-2.5)-11=x | | 480/2x=32 | | 2(4x-10)=-52 | | m+9/2=2 | | 5x-20=2x+70 | | 23(3x−5)=3 | | 9/10y-3=21/5 | | (15x+21)/3=(5x+7) | | v+8/3=4 | | 5=2+n | | -24-8x=-8x-24 | | -4+2g=-8 | | -5(4x-2)=90 | | x+2=5x+8 | | -14=b/4-17 | | 3y+14=5y-1 | | 10(x+107)=−2(7−x) | | 5k+3k+2k-6=14 | | 11/20-1/5=x-7/4 | | -4(x+9)=-3 | | 1/10(x+107)=-2(7-x) | | 5/8n=6+2/8n | | 4y+15=159 | | 3(y+12)=51 | | X-40=4(2x+3)-10 | | Y=5/(4-x) | | 7x+11=3x+13 | | -5(x+5)+32=13-6x | | 3(x+7)-3=63-6x | | -2x=5=19 | | 32m+0.32=42.24 | | -3x²=3x |