If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+40x=0
a = 8; b = 40; c = 0;
Δ = b2-4ac
Δ = 402-4·8·0
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-40}{2*8}=\frac{-80}{16} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+40}{2*8}=\frac{0}{16} =0 $
| (x-3)(x+9)=-24 | | 50^y=50 | | 7z+7=-4 | | 6(b-4)=3(5-4)+3 | | 0.7g-7.89=17.31+14.7g | | 11y+46=90 | | 7(4x+8)=336 | | -.75x+10=1.25x-4 | | 2(-6+6x)=48 | | -(13-6y)+2y=11 | | 5v+8=8v+2 | | -5(2-4x)=-190 | | v=4/3(3.14)(10)^3 | | 0.01(x+4)0.04=0.01(5x+4) | | -7c-5=-5+13c | | -5(-10-6x)=170 | | 19•w=209 | | 8=-10+8x | | 6(2+y)=3(3-9) | | 1.75d=12.25 | | 27=1/(6^x) | | v=(3.14)(3)^2(10) | | w^2+8w+20=0 | | 5v+8=8v+3 | | -113=7+8a | | (-2(4x+4)=-96 | | -4+17j=19j | | 12−x=7x+32 | | 3(q-2)=2(2q+5) | | 3x−2=−16 | | v=(3.14)(8)^2*15 | | 2x+0=7x-30 |