If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+32x+16=0
a = 8; b = 32; c = +16;
Δ = b2-4ac
Δ = 322-4·8·16
Δ = 512
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{512}=\sqrt{256*2}=\sqrt{256}*\sqrt{2}=16\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-16\sqrt{2}}{2*8}=\frac{-32-16\sqrt{2}}{16} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+16\sqrt{2}}{2*8}=\frac{-32+16\sqrt{2}}{16} $
| n/3=18=20 | | -9=m/4-13 | | 1.05=25.2x | | 16=3g+7 | | 11x-17=4x+10 | | 1.06=42.40x | | 9=3(y) | | 42.40=1.06x | | 33.6=1.2x | | 112=14g | | 86-2y+2y=86 | | 81+55+11a=180 | | 2c+2c+44=180 | | 5z-7+z+17+92=180 | | 61+47+6u=180 | | 39+91+2u=180 | | x+57+84=180 | | 47+3x+4x=180 | | y+25+y-1+2y=180 | | x+38+105=180 | | 47+69+2x=180 | | 19c+16c+10c=180 | | 36+6c+10c=180 | | 40+90+5t=180 | | 52+2x=18- | | 11+2x=3(x-2) | | (y+2)(y+6)=-3 | | -1/2x+5/8=3/8x-11/16 | | (y+2)(y+6=-3 | | 3(5x+11)=10x-12 | | 0.4(x-5)=0.6x+2 | | 10-3m=8-4m |