If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8x^2+14x+3=0
a = 8; b = 14; c = +3;
Δ = b2-4ac
Δ = 142-4·8·3
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-10}{2*8}=\frac{-24}{16} =-1+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+10}{2*8}=\frac{-4}{16} =-1/4 $
| -1(3-x)=-2x-9. | | 5n16=154 | | 7x10(2x+9)=36 | | 45+3x=110 | | 5(2y)-4=2(2y)+14 | | 50-7x=29 | | 5(2x-10)*2+14=19 | | 7.1x-5.3=30.2 | | 5x+40=2x+130 | | 5n/16=15/4 | | -5/3+1/5w=-5/4 | | 2^m+1=4096 | | x2+4=7x-3 | | w/6+5/6=13/8 | | 6x2+5x-39=0 | | 6=m=8 | | 3x2-9x-84=0 | | k÷3=-20 | | -0.17p-0.05(5-5p)=0.06(p-2)-0.07 | | 17a+2+12a+37=180 | | 30t-4=30 | | 11-2n=-3n | | -15r=-15 | | (13x-1)=9x+3) | | 2n+5+49=180 | | 4.17x=22 | | 4*17x=21 | | 50=3(s+16)-2(s-20) | | (24+x)×7=63 | | U+1=-11-11u+13u | | -13d=-12d+10 | | x2+7x-16=0 |