8x-3(2x-4)=3x(x-6)

Simple and best practice solution for 8x-3(2x-4)=3x(x-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x-3(2x-4)=3x(x-6) equation:



8x-3(2x-4)=3x(x-6)
We move all terms to the left:
8x-3(2x-4)-(3x(x-6))=0
We multiply parentheses
8x-6x-(3x(x-6))+12=0
We calculate terms in parentheses: -(3x(x-6)), so:
3x(x-6)
We multiply parentheses
3x^2-18x
Back to the equation:
-(3x^2-18x)
We add all the numbers together, and all the variables
2x-(3x^2-18x)+12=0
We get rid of parentheses
-3x^2+2x+18x+12=0
We add all the numbers together, and all the variables
-3x^2+20x+12=0
a = -3; b = 20; c = +12;
Δ = b2-4ac
Δ = 202-4·(-3)·12
Δ = 544
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{544}=\sqrt{16*34}=\sqrt{16}*\sqrt{34}=4\sqrt{34}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{34}}{2*-3}=\frac{-20-4\sqrt{34}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{34}}{2*-3}=\frac{-20+4\sqrt{34}}{-6} $

See similar equations:

| 29=5+8b | | u+2.7=9.15 | | b/2-5=-2 | | -35=x-4x+1-(x+1)-2x-(x+1) | | 8x-17=2x(-13) | | 6y+9+9y=39 | | -0.5(s-6)-4=-0.5(1+s) | | 12=x+x+x+x | | b/3+20=23 | | 15x^2-100x=-125 | | 6(2a+4)-3a=-2(a-7)-22 | | 9+6d-6-4d=31 | | 2a+61=9a+40 | | X+3x-5=2x+1 | | v4=10 | | 70=5(p-78) | | 1-1/2x-3=3(4-3/2x) | | x-3)7x+4)+3(x-1)=-355 | | 1/3x-15=7/3x-30 | | 10=e/5+10 | | -4y+2-6+2y=12-6y | | r+53=5 | | 2b+18=b | | 11/2x-3=3(4-3/2x) | | 60x+80=50x+90 | | 6(w-85)=48 | | –3(2−7=q) | | h+-8=62 | | 27x+1=55 | | p+34+3p-20=80 | | 7y+2=8+6y | | 2n-5-2=-17 |

Equations solver categories