8x+4x(300-x)-1600=300

Simple and best practice solution for 8x+4x(300-x)-1600=300 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x+4x(300-x)-1600=300 equation:



8x+4x(300-x)-1600=300
We move all terms to the left:
8x+4x(300-x)-1600-(300)=0
We add all the numbers together, and all the variables
8x+4x(-1x+300)-1600-300=0
We add all the numbers together, and all the variables
8x+4x(-1x+300)-1900=0
We multiply parentheses
-4x^2+8x+1200x-1900=0
We add all the numbers together, and all the variables
-4x^2+1208x-1900=0
a = -4; b = 1208; c = -1900;
Δ = b2-4ac
Δ = 12082-4·(-4)·(-1900)
Δ = 1428864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1428864}=\sqrt{238144*6}=\sqrt{238144}*\sqrt{6}=488\sqrt{6}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1208)-488\sqrt{6}}{2*-4}=\frac{-1208-488\sqrt{6}}{-8} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1208)+488\sqrt{6}}{2*-4}=\frac{-1208+488\sqrt{6}}{-8} $

See similar equations:

| 4x-18.36=20.88 | | 1+3x-2+x=11 | | 55-x=63-x | | X+(4x-11)+(5x)=180 | | 60+2.5x+x=130 | | 60+2.5x+x=13- | | 20+5m=180-3m | | 4x+17=7x+14 | | 15t+2.50=10 | | X+(x-350)=1650 | | N+4=1p | | 0.6(2x-1)=x | | 1/2=2/3r | | m-555=20 | | k-17=k-25 | | 3h=2=2 | | x-1.4/3=9 | | 1.5d-3=-4.5 | | 5*x=793 | | 7)-72=18-6x= | | r+1r=1/1 | | 8(1j-4)=2(4j-16) | | 6x+7=5x3 | | 6x-4+5x-3=180 | | 4x-5x=-13 | | 13=4+1.5x | | a+9.1=4 | | 1/5^x-10=5^6x+9 | | 4x+88=15 | | 100=x.0.1+x | | 100=x.01+x | | x+59+20=73 |

Equations solver categories