8x+(5x-6-4x+1)=x-x(x-4)

Simple and best practice solution for 8x+(5x-6-4x+1)=x-x(x-4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x+(5x-6-4x+1)=x-x(x-4) equation:



8x+(5x-6-4x+1)=x-x(x-4)
We move all terms to the left:
8x+(5x-6-4x+1)-(x-x(x-4))=0
We add all the numbers together, and all the variables
8x+(x-5)-(x-x(x-4))=0
We get rid of parentheses
8x+x-(x-x(x-4))-5=0
We calculate terms in parentheses: -(x-x(x-4)), so:
x-x(x-4)
We multiply parentheses
-x^2+x+4x
We add all the numbers together, and all the variables
-1x^2+5x
Back to the equation:
-(-1x^2+5x)
We add all the numbers together, and all the variables
-(-1x^2+5x)+9x-5=0
We get rid of parentheses
1x^2-5x+9x-5=0
We add all the numbers together, and all the variables
x^2+4x-5=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{36}=6$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $

See similar equations:

| 6-3b=21 | | x+10+x-15+x+25=180 | | 5x+11=12x-1 | | 99610=100-55g | | 1x=6=3x-18 | | 45=7h+10 | | 2y-(-27)=-19 | | 15(w-3)=12w-42 | | 8x-7=4-3x | | −42=3(2x−6) | | 4x+9=18-5x | | 4+8(1+4v)=-48 | | 2÷3x-7÷12x=3 | | 5x^2+8=133 | | (15000/x)*100=50(20000/x)*100=100 | | 4(1-3a)=24-8a | | 10+10+x=40 | | 15=6v-3v | | 9x+2×=21 | | (9x-5)+(5x+11)+40=180 | | 5x-6=8x+13 | | 6x+7+5x2+4x1=36+7x | | 6y+12=-12+6y | | a(2+5)=14 | | 2a+2((1100/4)-(a/4))=800 | | −7x−2=82 | | 2.4=-0.2h-2 | | 3x+7=-2x+3 | | 3x-18=14x+36 | | (16-x)/2=8 | | 7.9=4+0.65*x | | 3(4x+7)=20x+4-8x+17 |

Equations solver categories