8x(x+2)=4(2x+9)=

Simple and best practice solution for 8x(x+2)=4(2x+9)= equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(x+2)=4(2x+9)= equation:



8x(x+2)=4(2x+9)=
We move all terms to the left:
8x(x+2)-(4(2x+9))=0
We multiply parentheses
8x^2+16x-(4(2x+9))=0
We calculate terms in parentheses: -(4(2x+9)), so:
4(2x+9)
We multiply parentheses
8x+36
Back to the equation:
-(8x+36)
We get rid of parentheses
8x^2+16x-8x-36=0
We add all the numbers together, and all the variables
8x^2+8x-36=0
a = 8; b = 8; c = -36;
Δ = b2-4ac
Δ = 82-4·8·(-36)
Δ = 1216
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1216}=\sqrt{64*19}=\sqrt{64}*\sqrt{19}=8\sqrt{19}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{19}}{2*8}=\frac{-8-8\sqrt{19}}{16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{19}}{2*8}=\frac{-8+8\sqrt{19}}{16} $

See similar equations:

| -17=2k+9 | | X+15=6x-26=5x+7 | | 3(-1)-5x=9 | | 5x^2-3x-2=0.S={1,-2/5} | | 9x-25=6x+8+10x-73 | | 71−u=9 | | -9-n=1-6n | | 5x^2-3x-2=0.S | | 55,000+2,500x=62,000+2,000x. | | −9p=−11 | | B=T-Le | | 12x+2=x+56 | | 6b-13=1+4b | | 8-8x=-128 | | 1/3x+1/2=−3 | | f(37)=8(37)-3 | | 285/3=1x | | 13x+12=−3 | | 150-0.5s=120+0.25 | | s-316=459 | | n-551=131 | | g-69=276 | | 0.16(y-3)+0.20y=0.12y-0.07(30) | | f-110=26 | | 7x-9+4x=22 | | u+64=301 | | 7/8b=5/6 | | j-86=467 | | (4x+8)+2x=7x-2 | | .131=x+(.121-x)1.17) | | 946=n+19 | | 8x^2+18x=1 |

Equations solver categories