8x(8x+6x)=7(7+9)

Simple and best practice solution for 8x(8x+6x)=7(7+9) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(8x+6x)=7(7+9) equation:



8x(8x+6x)=7(7+9)
We move all terms to the left:
8x(8x+6x)-(7(7+9))=0
We add all the numbers together, and all the variables
8x(+14x)-(716)=0
We add all the numbers together, and all the variables
8x(+14x)-716=0
We multiply parentheses
112x^2-716=0
a = 112; b = 0; c = -716;
Δ = b2-4ac
Δ = 02-4·112·(-716)
Δ = 320768
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{320768}=\sqrt{256*1253}=\sqrt{256}*\sqrt{1253}=16\sqrt{1253}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{1253}}{2*112}=\frac{0-16\sqrt{1253}}{224} =-\frac{16\sqrt{1253}}{224} =-\frac{\sqrt{1253}}{14} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{1253}}{2*112}=\frac{0+16\sqrt{1253}}{224} =\frac{16\sqrt{1253}}{224} =\frac{\sqrt{1253}}{14} $

See similar equations:

| 6x-97=28 | | -6x-1-x+2=3x-8 | | 3.2+x=7.4 | | 2x–3=6+x | | m=-4,5+3m= | | 6x-97=27 | | 3x-1=5x=5 | | -(x+11)+3(6-4x)=5(x+3) | | 7n-2n+2n-3n=12 | | k(-11)=-4 | | 15v-6v-7v=18 | | m=4,5+3m= | | 2^(x+1)=24 | | 3x-8x=-51+6 | | 4y-11+3y+9=180 | | v+3.6=8.48 | | k(-20)=-4 | | 11z-8z+3z+z-4z=18 | | 73.5=-4+8.5h | | 3x+2=2(x+2)+x | | 12r-4=r | | -5.5x+0.73=-3.67 | | 13r-3r-8r=14 | | 8x+4-6x+10=24 | | 55d=17.85 | | 8x+4(4x-3)=4(4x+4)-4 | | 30x3=10-5x | | 11c-3c=16 | | k/6.6+88.5=34.4 | | 8+4-6x+10=24 | | 7(x4-4)=-70 | | 4c-3c=18 |

Equations solver categories