8x(2)+17=2x(2)+35

Simple and best practice solution for 8x(2)+17=2x(2)+35 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8x(2)+17=2x(2)+35 equation:



8x(2)+17=2x(2)+35
We move all terms to the left:
8x(2)+17-(2x(2)+35)=0
We add all the numbers together, and all the variables
-(+2x^2+35)+8x2+17=0
We add all the numbers together, and all the variables
8x^2-(+2x^2+35)+17=0
We get rid of parentheses
8x^2-2x^2-35+17=0
We add all the numbers together, and all the variables
6x^2-18=0
a = 6; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·6·(-18)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*6}=\frac{0-12\sqrt{3}}{12} =-\frac{12\sqrt{3}}{12} =-\sqrt{3} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*6}=\frac{0+12\sqrt{3}}{12} =\frac{12\sqrt{3}}{12} =\sqrt{3} $

See similar equations:

| -9g+9=-10g | | 35-5n=65 | | -4x+2=7x-64 | | y=1/4(16)+2 | | -3r=-2r+9 | | 3x+12+8x-78=180 | | 7t+10=3t-10 | | 4p+5=-23 | | 5(2x+6)-x=39 | | 7-2d=-d | | -4(-5-2x)+3x=42 | | 4-5z=-9z | | |9+8x|=-25 | | 90=k(1+k) | | 12x=18.14 | | 3x-15+2×=-15 | | 12k^2+20k-9=0 | | 6+2q=8q | | -3t=t+8 | | 38+r=-7 | | 270=3k(1+k) | | 8y+20y=-56 | | |9+8x|=25 | | (11x-2)+(9x+1)=(19x+2) | | y=12(10)-5 | | 3(x-3)+2=23 | | (9x-4)=3x | | 5.2/x=3/(5-x) | | y=12(8)-5 | | 2-(z-3)+8z=14 | | q÷4=2.25 | | g(0)=2(0)-1 |

Equations solver categories