If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8q^2+6q=0
a = 8; b = 6; c = 0;
Δ = b2-4ac
Δ = 62-4·8·0
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-6}{2*8}=\frac{-12}{16} =-3/4 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+6}{2*8}=\frac{0}{16} =0 $
| 3x+2(4x-4)=2 | | 6x+10=x+17 | | w+w+w+3+w+3=70 | | 6=6x+30 | | -3d-10=-8d | | -7=3m-4 | | 4x×9=27 | | 7(-3x+8)=56 | | -4=t5 | | 5n-7=22 | | 5(-1+3x)=-5 | | -6(5x+8)=-288 | | 17x+163x-12=18(10x-17) | | 4(x−1)+9=17 | | -11t−17=-9t+19 | | 2^x-10/x-4=0 | | 99=3/4x+90 | | -60+40x=250 | | -1/4x-7=-12 | | 2x-5(x-4)=-5+4x+11 | | 6m=-9+3m | | k=1/2=3/4 | | 5z=5+6z | | 6(2n+3)=6(6n+4)+5 | | 6+5x-6=5x | | 3(3n+2)=6(8n+6)+2 | | -15–3w=4w–2w | | x-50+19=100 | | 7(n-4=21 | | 4x+2(x+6)=6 | | 98-x=214 | | 2(w-3)^2=18 |