8p-4p(p-4)=-12-(p-8)

Simple and best practice solution for 8p-4p(p-4)=-12-(p-8) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8p-4p(p-4)=-12-(p-8) equation:



8p-4p(p-4)=-12-(p-8)
We move all terms to the left:
8p-4p(p-4)-(-12-(p-8))=0
We multiply parentheses
-4p^2+8p+16p-(-12-(p-8))=0
We calculate terms in parentheses: -(-12-(p-8)), so:
-12-(p-8)
determiningTheFunctionDomain -(p-8)-12
We get rid of parentheses
-p+8-12
We add all the numbers together, and all the variables
-1p-4
Back to the equation:
-(-1p-4)
We add all the numbers together, and all the variables
-4p^2+24p-(-1p-4)=0
We get rid of parentheses
-4p^2+24p+1p+4=0
We add all the numbers together, and all the variables
-4p^2+25p+4=0
a = -4; b = 25; c = +4;
Δ = b2-4ac
Δ = 252-4·(-4)·4
Δ = 689
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-\sqrt{689}}{2*-4}=\frac{-25-\sqrt{689}}{-8} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+\sqrt{689}}{2*-4}=\frac{-25+\sqrt{689}}{-8} $

See similar equations:

| Y^2=8x+5 | | -2*a=-1 | | x+(.3x)=25000 | | .35x=0.6667x | | (2x-2)^2+12(2x-2)+36=0 | | -4/9=x/4= | | 54x-45=65x+54 | | 23x-45=54x+43 | | 35x+45=45x+35 | | 65x+54=35x+58 | | 65x-54=35x-58 | | x65-25=35x+54 | | x+16+64=180 | | x+106+128=180 | | x+49+156=180 | | x+90+128=180 | | x+90+141=180 | | x-51+163=180 | | x+51+163=180 | | x+116+134=180 | | x+90+150=180 | | x+90+153=180 | | 8x-9+67+90=180 | | 2x-44+590=180 | | x+19+54+90=180 | | x+48+54=180 | | x+53+65=180 | | x+54+63=180 | | x+58+78=180 | | x+57+62=180 | | x+40+53=180 | | x+50+61=180 |

Equations solver categories