If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 8n(3n + 7) = 672 Reorder the terms: 8n(7 + 3n) = 672 (7 * 8n + 3n * 8n) = 672 (56n + 24n2) = 672 Solving 56n + 24n2 = 672 Solving for variable 'n'. Reorder the terms: -672 + 56n + 24n2 = 672 + -672 Combine like terms: 672 + -672 = 0 -672 + 56n + 24n2 = 0 Factor out the Greatest Common Factor (GCF), '8'. 8(-84 + 7n + 3n2) = 0 Ignore the factor 8.Subproblem 1
Set the factor '(-84 + 7n + 3n2)' equal to zero and attempt to solve: Simplifying -84 + 7n + 3n2 = 0 Solving -84 + 7n + 3n2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -28 + 2.333333333n + n2 = 0 Move the constant term to the right: Add '28' to each side of the equation. -28 + 2.333333333n + 28 + n2 = 0 + 28 Reorder the terms: -28 + 28 + 2.333333333n + n2 = 0 + 28 Combine like terms: -28 + 28 = 0 0 + 2.333333333n + n2 = 0 + 28 2.333333333n + n2 = 0 + 28 Combine like terms: 0 + 28 = 28 2.333333333n + n2 = 28 The n term is 2.333333333n. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333n + 1.361111112 + n2 = 28 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333n + n2 = 28 + 1.361111112 Combine like terms: 28 + 1.361111112 = 29.361111112 1.361111112 + 2.333333333n + n2 = 29.361111112 Factor a perfect square on the left side: (n + 1.166666667)(n + 1.166666667) = 29.361111112 Calculate the square root of the right side: 5.418589402 Break this problem into two subproblems by setting (n + 1.166666667) equal to 5.418589402 and -5.418589402.Subproblem 1
n + 1.166666667 = 5.418589402 Simplifying n + 1.166666667 = 5.418589402 Reorder the terms: 1.166666667 + n = 5.418589402 Solving 1.166666667 + n = 5.418589402 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = 5.418589402 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = 5.418589402 + -1.166666667 n = 5.418589402 + -1.166666667 Combine like terms: 5.418589402 + -1.166666667 = 4.251922735 n = 4.251922735 Simplifying n = 4.251922735Subproblem 2
n + 1.166666667 = -5.418589402 Simplifying n + 1.166666667 = -5.418589402 Reorder the terms: 1.166666667 + n = -5.418589402 Solving 1.166666667 + n = -5.418589402 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + n = -5.418589402 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + n = -5.418589402 + -1.166666667 n = -5.418589402 + -1.166666667 Combine like terms: -5.418589402 + -1.166666667 = -6.585256069 n = -6.585256069 Simplifying n = -6.585256069Solution
The solution to the problem is based on the solutions from the subproblems. n = {4.251922735, -6.585256069}Solution
n = {4.251922735, -6.585256069}
| 48+24x=30x | | 18p-9p=18 | | p+5=p-5 | | 20/7x14=n | | 1/3*(6x-1) | | 8x+3.25=-7x+2.0 | | 17=3-v | | -28=-7(x+1) | | y-9=10+2 | | 15*3=3y | | 11x+1+80=180 | | x-4/9=5 | | 8cosx+1=-3 | | R/-11 | | 72+9=9y | | 0.5*x=2.35 | | 6x+7+125=180 | | -5(x+2)-4=-44 | | 12xk=72 | | x-12=-34 | | 0.5timesx=2.35 | | 0.01x^2+0.02x+1= | | 2(x-1)-19=-15 | | p(x)=0.01x^2+0.02x+1 | | X-X*.15=1500 | | 2*5*c=20 | | (-2/9w)=-6 | | 73=4x+3x+3 | | x/3=2/12 | | -2(2n-8)=-24 | | -2b+2-3b=-13 | | 13=-4k |