8n(2n-5)=3(6n-2)

Simple and best practice solution for 8n(2n-5)=3(6n-2) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8n(2n-5)=3(6n-2) equation:



8n(2n-5)=3(6n-2)
We move all terms to the left:
8n(2n-5)-(3(6n-2))=0
We multiply parentheses
16n^2-40n-(3(6n-2))=0
We calculate terms in parentheses: -(3(6n-2)), so:
3(6n-2)
We multiply parentheses
18n-6
Back to the equation:
-(18n-6)
We get rid of parentheses
16n^2-40n-18n+6=0
We add all the numbers together, and all the variables
16n^2-58n+6=0
a = 16; b = -58; c = +6;
Δ = b2-4ac
Δ = -582-4·16·6
Δ = 2980
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2980}=\sqrt{4*745}=\sqrt{4}*\sqrt{745}=2\sqrt{745}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-58)-2\sqrt{745}}{2*16}=\frac{58-2\sqrt{745}}{32} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-58)+2\sqrt{745}}{2*16}=\frac{58+2\sqrt{745}}{32} $

See similar equations:

| 3p+6(1p-5)=-2+5p | | 5(4x=+3)-2x | | 11h-(2h-)=118 | | 3/2(2x+6)=3x9 | | 3g-11=7+g | | 5(4x+3)=-2x | | 6+0.10x=0.16x+8 | | -13÷0.20=e | | 9q=-7+8q | | 12x-170=3x+55 | | 10x-6x-3x+14=20x-15x-3x-6 | | -1/5-4/9x=2/15 | | -5-2x+3-8x-2=-10x-4 | | X/y=95 | | q^2+10q+24=0 | | -12-2(5n-14)=-11n | | 13+6x=7x-3+7x | | 2x+8=7x-2=27 | | 4(r-6)-3(r-1)=2(r+7) | | -14+11s=-13+10s+7 | | -39+4p=5(1-8p) | | 4x-(6-x)=5x-36 | | 68=16x-4 | | 161=-7(5x+7) | | 2=4x-12 | | 8z=6+5z | | (2x+1˚)+(x-10˚)=90 | | 10x-25x=-45 | | -2c+6=1-3c | | -6y-8=18 | | 8x-19=10+7x | | G/3-12=g-4 |

Equations solver categories