If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8n^2+10n-1272=0
a = 8; b = 10; c = -1272;
Δ = b2-4ac
Δ = 102-4·8·(-1272)
Δ = 40804
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{40804}=202$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-202}{2*8}=\frac{-212}{16} =-13+1/4 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+202}{2*8}=\frac{192}{16} =12 $
| Y+5=3(x+5) | | y=4(6)=45 | | 10=-5x-x^2 | | 5a-(7a-3a)=-1 | | 5x-24=-44 | | 8=5-h | | x=5-7+8 | | Y=-16t^2+20t+9 | | 3-d=9 | | 2x-5=19-6x;x=3 | | x+9=18+2-2x | | 25+(8x-4)=45 | | x–7= | | a+(-12)=-5.5 | | 4v=18+v | | 22-(4+8x)=38 | | -66=-4x+2(-x-9) | | 12x-(5-3x)=0 | | x=523 | | -3x-2(2x+13)=-103 | | 5x-6(2x-10)=95 | | -6x+2(-7x-13)=-126 | | -5x-4(-x-7)=21 | | 4x+5(x-19)=-50 | | -5x-2(6x-16)=151 | | 172=4x+2(6x+6) | | 3x+29x=17 | | 4x-6(-4x+10)=164 | | 5x+4(6x+5)=-212 | | 6x+4(6x+5)=-212 | | 15x+13=7x+7 | | 11-(3-2x)=(-1) |