If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8m^2+16m=43
We move all terms to the left:
8m^2+16m-(43)=0
a = 8; b = 16; c = -43;
Δ = b2-4ac
Δ = 162-4·8·(-43)
Δ = 1632
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1632}=\sqrt{16*102}=\sqrt{16}*\sqrt{102}=4\sqrt{102}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{102}}{2*8}=\frac{-16-4\sqrt{102}}{16} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{102}}{2*8}=\frac{-16+4\sqrt{102}}{16} $
| v+-1/3=1/8 | | 4+4g=4 | | 0,5+3x=12,5 | | 9=3(q+19)-6 | | 1/8=-1/3+v | | 5+x+6=75 | | 5f-1=-41 | | z=17=23 | | 4(3r+4)=-7(2r+5)-1/2(4r+10) | | n-6-4=8 | | 522-4x=696-7x | | 1+7e=78 | | -2s+7=-9 | | s+4/4=3 | | 6w+w=7 | | (5x-4)=(2x+5) | | 1.25=-16t^2+32t+20 | | -4d+8=24 | | -13j=-12j+18 | | 1008-5x=1260+9x | | -1+2(x-4)=3x-5 | | 9+12n=- | | v/6=64 | | 11/3*2=c | | -3=12/n | | C=2m+30 | | -7x+1-10x^2=0−7x+1−10x2=0 | | –3=5x+7 | | c2+5=10 | | -2g=-17-3g | | b+16/–2=10 | | --4+5x=18+3x |