If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8k(6k-4)=10
We move all terms to the left:
8k(6k-4)-(10)=0
We multiply parentheses
48k^2-32k-10=0
a = 48; b = -32; c = -10;
Δ = b2-4ac
Δ = -322-4·48·(-10)
Δ = 2944
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2944}=\sqrt{64*46}=\sqrt{64}*\sqrt{46}=8\sqrt{46}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-32)-8\sqrt{46}}{2*48}=\frac{32-8\sqrt{46}}{96} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-32)+8\sqrt{46}}{2*48}=\frac{32+8\sqrt{46}}{96} $
| 3(-2x+1)=7x-8 | | -4.9x^2+27x+3=0 | | 3m^2-34M+63=0 | | 6(x-1)+7=4x+2(-2+x) | | 8/3x=8+5/3x | | 18z=90 | | 14/5(4-2/7y)=28 | | 5-5a=30 | | 6x^2=4x-10 | | (2-x)(2+x)-3x=0 | | 2(3x+7)=-34+42 | | 14+(x+5)=49+(9x+1) | | 4a^2-12a-40=0 | | 10d+15d=75 | | 4x-10=28+2x | | 28=5u-u | | c=5/9(134-32) | | 5q^2-8q=12 | | 0.25x=0.045 | | -1/2(9-6x)=33/2 | | 3+2y-2=8y+5-4y | | 90+3x-28=66-x | | -8=75t | | -13.9=-1.1+u/4 | | 2377800+10x=2067000+115x | | X+12=84-x | | 4=2j=6 | | -9+9k=27 | | 49−x^−7⋅7^4x+8=49^5x−3 | | 0.50x+0.45(50)=41.5 | | 10x+33=133 | | (7x+8)+(2x-15)+(2x+0)=180 |