If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8d^2-22d+9=0
a = 8; b = -22; c = +9;
Δ = b2-4ac
Δ = -222-4·8·9
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$d_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-22)-14}{2*8}=\frac{8}{16} =1/2 $$d_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-22)+14}{2*8}=\frac{36}{16} =2+1/4 $
| 3y+6=5y+7 | | -7m-12=28 | | y=7/2x-6 | | y=4/8x+21 | | 10b=100.000.000 | | 4^-y=16 | | 3q+7=79-13 | | 2k-36=6k-12 | | 90(n+10)+n=180 | | 28=x/7+31 | | 28+x/7=3- | | m/2+33=18 | | 5y-13=-58 | | 3993/b=391 | | 3x83=3x(90 | | 4x32=4x(40 | | 9z-5z=5.52 | | 3g=3.9 | | 0/45/x=15 | | b2.5=4.2 | | t/10=16 | | 21g=273 | | t/24=25 | | t24=25 | | 13h=702 | | 2h=966 | | 15=m11 | | 16z=912 | | 7x-44=11x-76 | | 7^x-7^(x-1)=-42 | | 216=12xx= | | 15z^2+9z=0 |