8a(5a+1)=8-2(a-3)

Simple and best practice solution for 8a(5a+1)=8-2(a-3) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8a(5a+1)=8-2(a-3) equation:



8a(5a+1)=8-2(a-3)
We move all terms to the left:
8a(5a+1)-(8-2(a-3))=0
We multiply parentheses
40a^2+8a-(8-2(a-3))=0
We calculate terms in parentheses: -(8-2(a-3)), so:
8-2(a-3)
determiningTheFunctionDomain -2(a-3)+8
We multiply parentheses
-2a+6+8
We add all the numbers together, and all the variables
-2a+14
Back to the equation:
-(-2a+14)
We get rid of parentheses
40a^2+8a+2a-14=0
We add all the numbers together, and all the variables
40a^2+10a-14=0
a = 40; b = 10; c = -14;
Δ = b2-4ac
Δ = 102-4·40·(-14)
Δ = 2340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2340}=\sqrt{36*65}=\sqrt{36}*\sqrt{65}=6\sqrt{65}$
$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-6\sqrt{65}}{2*40}=\frac{-10-6\sqrt{65}}{80} $
$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+6\sqrt{65}}{2*40}=\frac{-10+6\sqrt{65}}{80} $

See similar equations:

| 4(-2n+2)=-20-8n | | (z+9)^2=24 | | -5x(5+3)-5x+1=-44 | | 4(x-2)=x-6/2 | | 14-4x=-28 | | 27+(-12)-((3(-12))+47)=y | | y-4.4=6.7 | | X=-2(8x-3)+13 | | 8x-2=-5x+24 | | 30+5n=-5(n+2) | | 3m=7=4 | | 9=(-)3/8r | | x+3+3x=x+11 | | -5(5x+3)+1=-44 | | 7x(9-12)=2-5(8-1) | | 3(y+3)+5y=4(2y+1)+5 | | 3(d-1)=9 | | 8x-2+9x=3x+5-5x | | -8v+6=-106 | | 4+7x=4x(2x+1)-8 | | 12=t2+9 | | 150+4x-6=180 | | 3x+2+2x+3=30 | | 10x-13=x+3+7x-4 | | -9x-1=-2(5x+1) | | 2(k-1)+4=4(k+1 | | x+2+5=x+19 | | 4-4(x+1)=0 | | 4x+20=4-3x+12 | | -9=8+a/15 | | -8y+9=-8y-6 | | 6.2x+4.5=12.8x-6.5 |

Equations solver categories