8=3/4c+12-c+8

Simple and best practice solution for 8=3/4c+12-c+8 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8=3/4c+12-c+8 equation:



8=3/4c+12-c+8
We move all terms to the left:
8-(3/4c+12-c+8)=0
Domain of the equation: 4c+12-c+8)!=0
We move all terms containing c to the left, all other terms to the right
4c-c+8)!=-12
c∈R
We add all the numbers together, and all the variables
-(-1c+3/4c+20)+8=0
We get rid of parentheses
1c-3/4c-20+8=0
We multiply all the terms by the denominator
1c*4c-20*4c+8*4c-3=0
Wy multiply elements
4c^2-80c+32c-3=0
We add all the numbers together, and all the variables
4c^2-48c-3=0
a = 4; b = -48; c = -3;
Δ = b2-4ac
Δ = -482-4·4·(-3)
Δ = 2352
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{2352}=\sqrt{784*3}=\sqrt{784}*\sqrt{3}=28\sqrt{3}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-48)-28\sqrt{3}}{2*4}=\frac{48-28\sqrt{3}}{8} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-48)+28\sqrt{3}}{2*4}=\frac{48+28\sqrt{3}}{8} $

See similar equations:

| 3(5x+6)=-40+43 | | 2=2(x-3)-6x | | 3(x+4)=5(×-8) | | 2(w+18)+2w=244 | | 3x-10=(x+15)+25 | | 31=u/4+15 | | -1/3x+10=70 | | 4x+2/3=5/6-5x | | 3x+17=5x+32 | | 6u=16+4u | | -3(4m=3)+(6m+1)=43 | | 1/3n+3=7 | | 8x+1=45 | | 2/3c-4=20 | | 66/u=3 | | 15-3x+2x=1 | | 20=2x-16 | | 4x+3x+x=192 | | (2m)=2/7 | | |x|-5=-2 | | (15-3x)+2x=1 | | 5(2s-1)+12=6(s-3)-(2s+3) | | 4y+2=4()+2 | | w+5/8=6/7 | | 4k-15=13 | | x/34-7x=3 | | 10-15x-7-6x=6 | | 5x+13=7x-3 | | 3(3t+7)=15 | | 2=52/v | | 12c-4=14c-10c | | 1/3(3x+9)=27 |

Equations solver categories