88/48+22/5x=25/6x+1

Simple and best practice solution for 88/48+22/5x=25/6x+1 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 88/48+22/5x=25/6x+1 equation:



88/48+22/5x=25/6x+1
We move all terms to the left:
88/48+22/5x-(25/6x+1)=0
Domain of the equation: 5x!=0
x!=0/5
x!=0
x∈R
Domain of the equation: 6x+1)!=0
x∈R
We get rid of parentheses
22/5x-25/6x-1+88/48=0
We calculate fractions
15840x^2/5760x^2+25344x/5760x^2+(-24000x)/5760x^2-1=0
We multiply all the terms by the denominator
15840x^2+25344x+(-24000x)-1*5760x^2=0
Wy multiply elements
15840x^2-5760x^2+25344x+(-24000x)=0
We get rid of parentheses
15840x^2-5760x^2+25344x-24000x=0
We add all the numbers together, and all the variables
10080x^2+1344x=0
a = 10080; b = 1344; c = 0;
Δ = b2-4ac
Δ = 13442-4·10080·0
Δ = 1806336
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1806336}=1344$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1344)-1344}{2*10080}=\frac{-2688}{20160} =-2/15 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1344)+1344}{2*10080}=\frac{0}{20160} =0 $

See similar equations:

| 7(3p+7)=16+8p | | 4+5=1x | | 5(5x-5)=-25+5 | | 17m=-7+18m | | x^2+25=20x | | y÷6.12=0.8 | | b+6b-2=-10+8b | | X^2+3x-4=104 | | 10-7f=2-6f | | 9(b+7)=18 | | 2(8n-7)=10+4n | | -5r+5=-4r | | 4x+21=60 | | 2c+9=2c-7+2c | | -10c=-45 | | 2-3q=-7-6q | | -8n+6n+6=3-3n-3 | | 88=4(1-7n) | | 2−3q=-7−6q | | -g=12 | | 0=x^2-20x+25 | | 6(b+6)=18 | | (X)=5×2-7x+4 | | 3x-10=4x+21 | | 3x-10=90x | | 10+22*y=98 | | 8-0.25x=0.5x+2= | | 0=3x^2+14x-23 | | 3v-2v-1=12 | | 4n-4n+5n=15 | | 3x+(5x+12)/2=5x | | 17p-5p+-8p=-16 |

Equations solver categories