If it's not what You are looking for type in the equation solver your own equation and let us solve it.
85x=(85-x)(x+17)
We move all terms to the left:
85x-((85-x)(x+17))=0
We add all the numbers together, and all the variables
85x-((-1x+85)(x+17))=0
We multiply parentheses ..
-((-1x^2-17x+85x+1445))+85x=0
We calculate terms in parentheses: -((-1x^2-17x+85x+1445)), so:We get rid of parentheses
(-1x^2-17x+85x+1445)
We get rid of parentheses
-1x^2-17x+85x+1445
We add all the numbers together, and all the variables
-1x^2+68x+1445
Back to the equation:
-(-1x^2+68x+1445)
1x^2-68x+85x-1445=0
We add all the numbers together, and all the variables
x^2+17x-1445=0
a = 1; b = 17; c = -1445;
Δ = b2-4ac
Δ = 172-4·1·(-1445)
Δ = 6069
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6069}=\sqrt{289*21}=\sqrt{289}*\sqrt{21}=17\sqrt{21}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-17\sqrt{21}}{2*1}=\frac{-17-17\sqrt{21}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+17\sqrt{21}}{2*1}=\frac{-17+17\sqrt{21}}{2} $
| 3/2x-20=50 | | m/3+7=5 | | -5t+10=15 | | 5y=2y+y=22 | | j/(-5)-3=4 | | 3=3n-2n | | (3-4x)=12-16x | | 50=3(s+16)-2(5-12) | | 9(2n+3)=7(8n+5)+6 | | 3x+5/2x-4=1/3 | | 11^8^x=9 | | 0=25x-80x^-2 | | 35=x+7+6 | | 35=x+76x | | x+15=-10 | | x+20=-18 | | y=170 | | 8;(1+5x)+5=13+5x | | 3x+4=+18 | | (2/3)x-(1/6)=(1/4)x+(2/3) | | -3-12=9x+15-8x | | .2x+.3(19-x)=4.8 | | .2x+.3(.19-x)=4.8 | | 5y+3(y+2)=-27 | | 8^x-6=12 | | 5=a/5-6 | | 16^2x-3=4x+2 | | 5/9m-1/9=7/54 | | 4.83÷(x+2)=x | | X=4.83÷(x+2) | | 9-m/6=15 | | 3z+10=37 |