85+69+(6x+22)(x+37)=180

Simple and best practice solution for 85+69+(6x+22)(x+37)=180 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 85+69+(6x+22)(x+37)=180 equation:


Simplifying
85 + 69 + (6x + 22)(x + 37) = 180

Reorder the terms:
85 + 69 + (22 + 6x)(x + 37) = 180

Reorder the terms:
85 + 69 + (22 + 6x)(37 + x) = 180

Multiply (22 + 6x) * (37 + x)
85 + 69 + (22(37 + x) + 6x * (37 + x)) = 180
85 + 69 + ((37 * 22 + x * 22) + 6x * (37 + x)) = 180
85 + 69 + ((814 + 22x) + 6x * (37 + x)) = 180
85 + 69 + (814 + 22x + (37 * 6x + x * 6x)) = 180
85 + 69 + (814 + 22x + (222x + 6x2)) = 180

Combine like terms: 22x + 222x = 244x
85 + 69 + (814 + 244x + 6x2) = 180

Combine like terms: 85 + 69 = 154
154 + 814 + 244x + 6x2 = 180

Combine like terms: 154 + 814 = 968
968 + 244x + 6x2 = 180

Solving
968 + 244x + 6x2 = 180

Solving for variable 'x'.

Reorder the terms:
968 + -180 + 244x + 6x2 = 180 + -180

Combine like terms: 968 + -180 = 788
788 + 244x + 6x2 = 180 + -180

Combine like terms: 180 + -180 = 0
788 + 244x + 6x2 = 0

Factor out the Greatest Common Factor (GCF), '2'.
2(394 + 122x + 3x2) = 0

Ignore the factor 2.

Subproblem 1

Set the factor '(394 + 122x + 3x2)' equal to zero and attempt to solve: Simplifying 394 + 122x + 3x2 = 0 Solving 394 + 122x + 3x2 = 0 Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 131.3333333 + 40.66666667x + x2 = 0 Move the constant term to the right: Add '-131.3333333' to each side of the equation. 131.3333333 + 40.66666667x + -131.3333333 + x2 = 0 + -131.3333333 Reorder the terms: 131.3333333 + -131.3333333 + 40.66666667x + x2 = 0 + -131.3333333 Combine like terms: 131.3333333 + -131.3333333 = 0.0000000 0.0000000 + 40.66666667x + x2 = 0 + -131.3333333 40.66666667x + x2 = 0 + -131.3333333 Combine like terms: 0 + -131.3333333 = -131.3333333 40.66666667x + x2 = -131.3333333 The x term is 40.66666667x. Take half its coefficient (20.33333334). Square it (413.4444447) and add it to both sides. Add '413.4444447' to each side of the equation. 40.66666667x + 413.4444447 + x2 = -131.3333333 + 413.4444447 Reorder the terms: 413.4444447 + 40.66666667x + x2 = -131.3333333 + 413.4444447 Combine like terms: -131.3333333 + 413.4444447 = 282.1111114 413.4444447 + 40.66666667x + x2 = 282.1111114 Factor a perfect square on the left side: (x + 20.33333334)(x + 20.33333334) = 282.1111114 Calculate the square root of the right side: 16.796163592 Break this problem into two subproblems by setting (x + 20.33333334) equal to 16.796163592 and -16.796163592.

Subproblem 1

x + 20.33333334 = 16.796163592 Simplifying x + 20.33333334 = 16.796163592 Reorder the terms: 20.33333334 + x = 16.796163592 Solving 20.33333334 + x = 16.796163592 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20.33333334' to each side of the equation. 20.33333334 + -20.33333334 + x = 16.796163592 + -20.33333334 Combine like terms: 20.33333334 + -20.33333334 = 0.00000000 0.00000000 + x = 16.796163592 + -20.33333334 x = 16.796163592 + -20.33333334 Combine like terms: 16.796163592 + -20.33333334 = -3.537169748 x = -3.537169748 Simplifying x = -3.537169748

Subproblem 2

x + 20.33333334 = -16.796163592 Simplifying x + 20.33333334 = -16.796163592 Reorder the terms: 20.33333334 + x = -16.796163592 Solving 20.33333334 + x = -16.796163592 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-20.33333334' to each side of the equation. 20.33333334 + -20.33333334 + x = -16.796163592 + -20.33333334 Combine like terms: 20.33333334 + -20.33333334 = 0.00000000 0.00000000 + x = -16.796163592 + -20.33333334 x = -16.796163592 + -20.33333334 Combine like terms: -16.796163592 + -20.33333334 = -37.129496932 x = -37.129496932 Simplifying x = -37.129496932

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-3.537169748, -37.129496932}

Solution

x = {-3.537169748, -37.129496932}

See similar equations:

| v^2=45 | | 2(10)(10)+2(12)(10)+2(10)(12)=A | | v^2=2500 | | 9p=40 | | (3/8x9/10)x9/10 | | g(-4)=7 | | v^2=-35 | | 18(3-10y)= | | h(9)=9 | | -3/2x^-0.5 | | -20=-11+k | | y=-5t^2+50t | | 2=q-4/2 | | -14(19-11b)+12= | | 7n^2+29n+4=0 | | 14=6-v | | 2n-1=0 | | 2(c-6)-15=-1 | | 2(c-17)=4 | | -4(1+8n)=-100 | | 10=2(t+1) | | 2x+4(2x-4)=3-(5x+2) | | 4/h=2 | | 2cos^2x-3cosx-2=0 | | 8=2(v+1) | | 5(3n+10)= | | y=(2n+6)(5n-2)-(3n+2)(n+2) | | 3-8z+2=8 | | 8(x)+2=7(x) | | dp/dt=5t^5*ln(4t) | | 3(2x-3)+x=2x+5x-9 | | v(x)=x(50-2x)(30-2x) |

Equations solver categories