If it's not what You are looking for type in the equation solver your own equation and let us solve it.
841=x2
We move all terms to the left:
841-(x2)=0
We add all the numbers together, and all the variables
-1x^2+841=0
a = -1; b = 0; c = +841;
Δ = b2-4ac
Δ = 02-4·(-1)·841
Δ = 3364
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3364}=58$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-58}{2*-1}=\frac{-58}{-2} =+29 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+58}{2*-1}=\frac{58}{-2} =-29 $
| 8y-3y=(4+-4)y | | 3n+4=6n–11 | | 23=14+7x | | 2y-1=9-3y | | 5^2x+^1-26(5^x)+5=0 | | x+62+70+70=180 | | 6.5z-5.42=3.88+3z+6.6z | | 1.15-x=20x= | | -3+9q=15+7q | | m-14=39 | | 7–3x=-4x+13 | | 10(t)=30000(1.02) | | 9w+27=90 | | 8=2−2q | | 3x+17+80+80=180 | | 4/3x-10-5/3x=-3 | | 2(y-6)=4y-12-2y | | -z-10=4z+10 | | 5x+1=10 | | 2(r+15)=40 | | -5x+-60=915 | | 2x−3=19 | | 3x–2=-5x+14 | | 49289+4(1xx−−)=(7−x)+1 | | 5.3u-9.01=1.92+7.6u-4.26 | | .25x^2-2x-2.75=0 | | 8x+7+3x+2=38 | | 4j−–8=12 | | 16=–4(t−20) | | -3=4/3x-10-5/3x | | 4x-3+6x=2 | | –20=–2(n+19)+–10 |