832=(2)(x-4)(x+6)

Simple and best practice solution for 832=(2)(x-4)(x+6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 832=(2)(x-4)(x+6) equation:



832=(2)(x-4)(x+6)
We move all terms to the left:
832-((2)(x-4)(x+6))=0
We multiply parentheses ..
-(2(+x^2+6x-4x-24))+832=0
We calculate terms in parentheses: -(2(+x^2+6x-4x-24)), so:
2(+x^2+6x-4x-24)
We multiply parentheses
2x^2+12x-8x-48
We add all the numbers together, and all the variables
2x^2+4x-48
Back to the equation:
-(2x^2+4x-48)
We get rid of parentheses
-2x^2-4x+48+832=0
We add all the numbers together, and all the variables
-2x^2-4x+880=0
a = -2; b = -4; c = +880;
Δ = b2-4ac
Δ = -42-4·(-2)·880
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{7056}=84$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-84}{2*-2}=\frac{-80}{-4} =+20 $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+84}{2*-2}=\frac{88}{-4} =-22 $

See similar equations:

| 11((x-2)/(x-3))+(13/x)=(-13/x(x-3)) | | x2+10x+41=0 | | 2100=50+3x+2x+x | | 4=(8x-9) | | 1=0.2x-0.8x-53 | | 2x+64+18-11x=180 | | 8x+8x=-10 | | 11.4x-1.1=0.2x+1.3 | | 8x+8x=-3-7 | | 8+x=-32 | | 4(3n+1)=9(3n+6)+9 | | -0.25x=-1 | | X²-x=4 | | 6(x+5)-3=27 | | x²+√5x=(1/5) | | X^2+√5x=(1/5) | | 2/3+1/2=3/5x-5/6 | | 5x=0.167 | | 6x+1=3x+40 | | 3b+2b^2=77 | | 2(2x–4)+(6–3x)=27 | | -3(2x-5)+9=-6x+24 | | 11x-10x-22=13 | | ((2x)/(x-3)+(2/x)=3 | | ​3/8​​c−2=​3/2​​c−12 | | 4-(1/x)-(7/x^2)=0 | | 2=(xx120)/12 | | 2x-8=x-7/2 | | 6=w-27/w | | (2/3)x^2-x=(1/3) | | -0.10(117)+0.95x=0.05(x-18) | | (1/2)x^2-(1/4)x-(3/2)=0 |

Equations solver categories