If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81n^2+33=42
We move all terms to the left:
81n^2+33-(42)=0
We add all the numbers together, and all the variables
81n^2-9=0
a = 81; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·81·(-9)
Δ = 2916
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2916}=54$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-54}{2*81}=\frac{-54}{162} =-1/3 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+54}{2*81}=\frac{54}{162} =1/3 $
| 3=7/2x-1/2x+5 | | 36n2-24=-15 | | 2y+7=12-4y | | 20x-1+4x+13=180 | | 9v-26=v-2 | | -5(1+11x)+6(1+9x)=-8-x | | 3^x+1=18 | | 2x+1+39=190 | | 7u+3=2u+18 | | -2(x+7)+4x=4(x+9) | | 18x-35=26x-113 | | 14/4b+4.76=18.76 | | 17x^2-17x+10=0 | | x=√3x+300 | | 2p=1+7 | | √3x+300=x | | K18=42+5y | | 1.2y+1.2=2.4 | | 2t+2.5=10.75 | | 28x+3=26x-19 | | .4x-0.8(x-4)=1.3x-1.9 | | 2(10-7n)+5n=-(8n-10) | | 23=18v=-21+14v | | 164=25-u | | 18-3x=24-9x | | 4/10h+170/100=77 | | 5=85x | | 8-(x+13)=25 | | 12b-3=9 | | Y=2x^2-1-15 | | (4x)+15=60 | | 4z/10-9=9 |