811/17y+12=2y-6

Simple and best practice solution for 811/17y+12=2y-6 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 811/17y+12=2y-6 equation:



811/17y+12=2y-6
We move all terms to the left:
811/17y+12-(2y-6)=0
Domain of the equation: 17y!=0
y!=0/17
y!=0
y∈R
We get rid of parentheses
811/17y-2y+6+12=0
We multiply all the terms by the denominator
-2y*17y+6*17y+12*17y+811=0
Wy multiply elements
-34y^2+102y+204y+811=0
We add all the numbers together, and all the variables
-34y^2+306y+811=0
a = -34; b = 306; c = +811;
Δ = b2-4ac
Δ = 3062-4·(-34)·811
Δ = 203932
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{203932}=\sqrt{4*50983}=\sqrt{4}*\sqrt{50983}=2\sqrt{50983}$
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(306)-2\sqrt{50983}}{2*-34}=\frac{-306-2\sqrt{50983}}{-68} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(306)+2\sqrt{50983}}{2*-34}=\frac{-306+2\sqrt{50983}}{-68} $

See similar equations:

| 11/4x-23/5=-1 | | 3(2x-6)=42 | | y=0.25+4 | | 5(x-10)+6=5x-7 | | 2(x+1)+2=-5x-3(-3+x) | | 3/10x+7/5=1/5 | | 9x+x+10+8=45 | | 1=-6+x/2 | | 0.5x+10=40 | | 2a-(a+10)+44=180 | | 12m=144;m= | | d—-4.1=6.1 | | 16x-4+9x-7+58=180 | | 682.50=p(0.0325)(3) | | 8.7r=42.5 | | 6^{2x}+6^{x+1}-55=0 | | 6=2/a+2 | | -10-4x=x | | -3c-16c-9=-17 | | 4m-9=3+m | | 8-8(18=4x)=8 | | 1/2x+2=1/2x-4 | | 5x-5(2x+1)=3(4x+5) | | 3-(x-1)=-4x+3(x+10) | | 10+x=-16 | | x+5+x-2=4x-9 | | 54=6(y-1) | | 113=n–60= | | 12v=−60 | | 3(x+7)=4x+32 | | 113=n–60 | | 5.6g+3=2.6g+18 |

Equations solver categories