If it's not what You are looking for type in the equation solver your own equation and let us solve it.
81+b(2)=1600
We move all terms to the left:
81+b(2)-(1600)=0
We add all the numbers together, and all the variables
b^2-1519=0
a = 1; b = 0; c = -1519;
Δ = b2-4ac
Δ = 02-4·1·(-1519)
Δ = 6076
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{6076}=\sqrt{196*31}=\sqrt{196}*\sqrt{31}=14\sqrt{31}$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{31}}{2*1}=\frac{0-14\sqrt{31}}{2} =-\frac{14\sqrt{31}}{2} =-7\sqrt{31} $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{31}}{2*1}=\frac{0+14\sqrt{31}}{2} =\frac{14\sqrt{31}}{2} =7\sqrt{31} $
| 5.5+b(2)=12.9 | | 5^(4x+2)=10^(3x-1) | | 7(x+4)=-27 | | (12)(11)(h)=2.244 | | -0.05t^2+3.5t=60 | | 9=x+5/2 | | 0.254xx=10 | | 4x(x-8)=20 | | 0.6=q10.8 | | (3x+15)+(x+10)+103=180 | | 0.25+1.11x=5.0 | | 2/5(5x-15)=8 | | 1/3k-1/2k=5 | | 1/4b+1/2=1 | | 9=x+52 | | 2x(x-5)-30=-24 | | 50=x(x-2)+x+(2x+8) | | 4/5x+7=13 | | 5.3r-7.3r-6=-26 | | a+a/2+3=3a/4+9 | | x/100000=1.5 | | x/100000=0.5 | | 10y+12y-32=25 | | 4x-40=2x-16 | | 1.5xx=70 | | 7n^=488 | | 4/9=0.444x/45 | | 3/5=0.6x/35 | | 5/12=0.41720/x | | 7/12=x/49 | | 1/3=a/15 | | b-18.95=43.42 |