80(t)=80+64t-16t2

Simple and best practice solution for 80(t)=80+64t-16t2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 80(t)=80+64t-16t2 equation:



80(t)=80+64t-16t^2
We move all terms to the left:
80(t)-(80+64t-16t^2)=0
We get rid of parentheses
16t^2-64t+80t-80=0
We add all the numbers together, and all the variables
16t^2+16t-80=0
a = 16; b = 16; c = -80;
Δ = b2-4ac
Δ = 162-4·16·(-80)
Δ = 5376
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{5376}=\sqrt{256*21}=\sqrt{256}*\sqrt{21}=16\sqrt{21}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-16\sqrt{21}}{2*16}=\frac{-16-16\sqrt{21}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+16\sqrt{21}}{2*16}=\frac{-16+16\sqrt{21}}{32} $

See similar equations:

| 0(t)=80+64t-16t2 | | H(t)=80+64t-16t2 | | 64(t)=80+64t-16 | | 7y+5/y+2=-6/5 | | y+3/2=3/5 | | t/3+1/3=4/3 | | t/t/3+t/3=4/3 | | x^2-15x-18000=0 | | -.8x^2+28x-122.5=0 | | 4y÷7+8=38 | | 3x-6÷2x+15=9÷8 | | 3x-6÷=2x+15=9÷8 | | (5y-65)×1+65-5y=1-2 | | 3x-6/2x+15=9/8 | | 3x-6=9/2x+15=8 | | 7^7=x | | 343=496^x | | 2(x+3)+3(x+1)=8x-9 | | 2x+70+x+65=180 | | 7x+70=16x-20 | | x/3+x/4-x/6=5 | | 15x-7+151-3x=180 | | 3x+111=7+11x | | 7x+61+11x-7=180 | | 2a-(8a+)-(a+2)×5=9 | | 3r/r=0 | | x/28=18/14 | | n/5=n+1/7 | | 9x-4=3x+1 | | 2x-23=x+7 | | x^2-7x-450=0 | | 12-6x+4-8x-2x(x-8)=0 |

Equations solver categories