If it's not what You are looking for type in the equation solver your own equation and let us solve it.
80(t)=-16t^2-40t+72
We move all terms to the left:
80(t)-(-16t^2-40t+72)=0
We get rid of parentheses
16t^2+40t+80t-72=0
We add all the numbers together, and all the variables
16t^2+120t-72=0
a = 16; b = 120; c = -72;
Δ = b2-4ac
Δ = 1202-4·16·(-72)
Δ = 19008
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{19008}=\sqrt{576*33}=\sqrt{576}*\sqrt{33}=24\sqrt{33}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-24\sqrt{33}}{2*16}=\frac{-120-24\sqrt{33}}{32} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+24\sqrt{33}}{2*16}=\frac{-120+24\sqrt{33}}{32} $
| (x+13)/2=5x/3 | | -4x+3(8x+1)=123 | | 10=-0.5c+18 | | 5x+17=2(5x-4) | | 5+3(y-4)=5(y+2)y | | -12=x/3+1 | | 10+4x=8+2x | | -27=4(2x+3)-7 | | 3(x+4)=-x-20 | | (6x-6)(7x+1)=55 | | b+1,239=999 | | -3x-6=4(2x-2)-9 | | 7(8p+3)+5p=-345 | | x-5.4=-8.1 | | -10x+11=-6x-13 | | x+12=-8-4x | | p-983=817 | | -10x+7=-33 | | (3y+22)=180+4y | | s2+8s+2=0 | | u-17,923=-14,618 | | -2.3=x+7.6 | | 3/4+2x=5/4 | | -4(2+5n)-5=5n+22 | | 4(6+5a)+2a=-108 | | -6w+4(w-3)=-22 | | v+13,281=-9,652 | | 7x+13+9x+7=180 | | y2+5y-5=0 | | 20x+18=172+9x | | -2x+8=-2(2x+-4) | | -8(7n+7)=168 |