8/9x-2(x+1)=88

Simple and best practice solution for 8/9x-2(x+1)=88 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/9x-2(x+1)=88 equation:



8/9x-2(x+1)=88
We move all terms to the left:
8/9x-2(x+1)-(88)=0
Domain of the equation: 9x!=0
x!=0/9
x!=0
x∈R
We multiply parentheses
8/9x-2x-2-88=0
We multiply all the terms by the denominator
-2x*9x-2*9x-88*9x+8=0
Wy multiply elements
-18x^2-18x-792x+8=0
We add all the numbers together, and all the variables
-18x^2-810x+8=0
a = -18; b = -810; c = +8;
Δ = b2-4ac
Δ = -8102-4·(-18)·8
Δ = 656676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{656676}=\sqrt{36*18241}=\sqrt{36}*\sqrt{18241}=6\sqrt{18241}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-810)-6\sqrt{18241}}{2*-18}=\frac{810-6\sqrt{18241}}{-36} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-810)+6\sqrt{18241}}{2*-18}=\frac{810+6\sqrt{18241}}{-36} $

See similar equations:

| 2+8x=8(x+3)+2 | | X-1.6=-7.19+2.3x | | a=(3a+8)-(3a+5) | | 10x+63=283 | | 2(7k+4)=5(2k-3) | | 6=11/12x+28 | | 9|4p2|8=35 | | 6x-53=25 | | 4p+9(6)=60 | | 6h+3.20=18.20 | | (4x+17)=67 | | 5x-44=51 | | (-)1/2m=-9 | | 3/4p+1=1/2 | | 5x^2(x^2+2)=27+4x^2 | | x-(0.2x)=55 | | r-87=46 | | 4z=20=32 | | 6-6x=7x-9x6 | | 14x-96=72+6x | | 28+3p=35 | | 201=-y+54 | | x(0.2x)=55 | | 8x-88=16 | | 25-d=17 | | 9m/9=15/9 | | 12x-2=5+11x | | 5x-8+9x=180 | | 2(x+3)+3x=5x-24 | | X+7=x+16 | | 7(w-1)=8(w+3) | | -20+m=-22 |

Equations solver categories