If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8/9k+2/5=-4+2/5k
We move all terms to the left:
8/9k+2/5-(-4+2/5k)=0
Domain of the equation: 9k!=0
k!=0/9
k!=0
k∈R
Domain of the equation: 5k)!=0We add all the numbers together, and all the variables
k!=0/1
k!=0
k∈R
8/9k-(2/5k-4)+2/5=0
We get rid of parentheses
8/9k-2/5k+4+2/5=0
We calculate fractions
1000k/1125k^2+(-18k)/1125k^2+18k/1125k^2+4=0
We multiply all the terms by the denominator
1000k+(-18k)+18k+4*1125k^2=0
We add all the numbers together, and all the variables
1018k+(-18k)+4*1125k^2=0
Wy multiply elements
4500k^2+1018k+(-18k)=0
We get rid of parentheses
4500k^2+1018k-18k=0
We add all the numbers together, and all the variables
4500k^2+1000k=0
a = 4500; b = 1000; c = 0;
Δ = b2-4ac
Δ = 10002-4·4500·0
Δ = 1000000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1000000}=1000$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1000)-1000}{2*4500}=\frac{-2000}{9000} =-2/9 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1000)+1000}{2*4500}=\frac{0}{9000} =0 $
| 35=5m+15 | | 42=7q | | c=3.14*12.4 | | 14=21+y | | 7+n=41 | | (8x4x)/(7x2x)=0 | | 11=j+9 | | 13x+5+2x=35 | | 7(3a+4)=11(a+1)+19 | | 0.5(x+4)=-12 | | 7(2t—4)=3(7t—2)—8 | | 6=3-t | | 20=s+14 | | 23=4y+11 | | 2(3y+6)−3(−4−y)=9y | | j/10=80- | | -5t-5t=-70 | | z2− –3=6 | | 3(y-6)-5y=-24 | | 47=6h+11 | | 62=2p | | 4x-(10)=5x+3 | | 9=f+6 | | x+0.444=0.333 | | -9a=855 | | 1750+35x=3500 | | v+9=10 | | 180=x+(3x+10) | | 1=7f | | -7a^2-65a-1=0 | | 6m-m-2=0 | | 21=2w+9 |