8/5c-2=2/3c-12

Simple and best practice solution for 8/5c-2=2/3c-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/5c-2=2/3c-12 equation:



8/5c-2=2/3c-12
We move all terms to the left:
8/5c-2-(2/3c-12)=0
Domain of the equation: 5c!=0
c!=0/5
c!=0
c∈R
Domain of the equation: 3c-12)!=0
c∈R
We get rid of parentheses
8/5c-2/3c+12-2=0
We calculate fractions
24c/15c^2+(-10c)/15c^2+12-2=0
We add all the numbers together, and all the variables
24c/15c^2+(-10c)/15c^2+10=0
We multiply all the terms by the denominator
24c+(-10c)+10*15c^2=0
Wy multiply elements
150c^2+24c+(-10c)=0
We get rid of parentheses
150c^2+24c-10c=0
We add all the numbers together, and all the variables
150c^2+14c=0
a = 150; b = 14; c = 0;
Δ = b2-4ac
Δ = 142-4·150·0
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{196}=14$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-14}{2*150}=\frac{-28}{300} =-7/75 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+14}{2*150}=\frac{0}{300} =0 $

See similar equations:

| 15+4x=−33 | | 34=42-2v | | 0=4.9x^2+24x+8 | | x2=15x | | 9w-2=8w+9 | | 1000+3474=h | | 4473+1=2s-1+1 | | 4x-2+10x+14=180 | | 3x2−18x+16=0 | | 4400+73=2j+1 | | F(x)=x3+1 | | 350=5x+120 | | 2(a-5)+3a=50 | | 34+5o=4400+7o+3 | | -5x-58=42 | | (1.8-2x)*(1.4-2x)*x=0 | | 9(2r+8)=270 | | 69+24g=4473 | | 5/6r+10=30 | | -3(x-7)=14 | | x+72=94 | | -40=100t-4.9t^2 | | 4.8z=-19.38+3.1z | | 20+5b=3(-6+8b) | | 25x=19x+4 | | x^2+85.2x-579.36=0 | | 10(c+6/15)=-102 | | -4+7-19j=15-20j | | x^2+85.2-579.36=0 | | -20-11s=-13s | | 2(4v-2)-3=28+v | | 0.32x^2+x-1.25=0 |

Equations solver categories