If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8/3z+11/9z-7/3=7/6
We move all terms to the left:
8/3z+11/9z-7/3-(7/6)=0
Domain of the equation: 3z!=0
z!=0/3
z!=0
z∈R
Domain of the equation: 9z!=0We add all the numbers together, and all the variables
z!=0/9
z!=0
z∈R
8/3z+11/9z-7/3-(+7/6)=0
We get rid of parentheses
8/3z+11/9z-7/3-7/6=0
We calculate fractions
(-5103z^2)/1458z^2+2592z/1458z^2+1782z/1458z^2+(-2268z)/1458z^2=0
We multiply all the terms by the denominator
(-5103z^2)+2592z+1782z+(-2268z)=0
We add all the numbers together, and all the variables
(-5103z^2)+4374z+(-2268z)=0
We get rid of parentheses
-5103z^2+4374z-2268z=0
We add all the numbers together, and all the variables
-5103z^2+2106z=0
a = -5103; b = 2106; c = 0;
Δ = b2-4ac
Δ = 21062-4·(-5103)·0
Δ = 4435236
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4435236}=2106$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2106)-2106}{2*-5103}=\frac{-4212}{-10206} =26/63 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2106)+2106}{2*-5103}=\frac{0}{-10206} =0 $
| 5•x*10•(30-x)=230 | | 16(8)+10+x=180 | | 1600/8x=5 | | .5(12x-6)=0.25(16x+12) | | 4+8=5x+12 | | 20x+50=9 | | x^2-4x-4=6 | | 7(u-1)=5u+5-6(-2u-1) | | -36d2–5=0 | | 4(u+7)=-3(5u-8)+u | | 4z-2z-1=-27 | | 34.20=21.6/12x | | 23-7(1-x)=26-5(2-4x)-13x | | 12n-24=-72 | | 7x2+49=56x | | 3x+8=2(3x+2)-3 | | -2v-6=-6(v-5) | | 6x-35=25 | | 8(u-3)=-7u+21 | | 12.22+x=4.55 | | 2(x+5)+2(x)=38 | | x=23(5)-13(7) | | 6w+48=-3(w+5) | | 1/2+6=1/2(x-4) | | 25=25/6y-1/6y^2 | | 5x-13=6x-37 | | -15x/3+2=19 | | 1.46+0.74y+3.01=3.17 | | -7v+2(v-5)=30 | | 6x+24x-9=6(5x+3) | | 5/6x+2/3=-4 | | 42/51=x/100 |