8/3c-2=2/4c-12

Simple and best practice solution for 8/3c-2=2/4c-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/3c-2=2/4c-12 equation:



8/3c-2=2/4c-12
We move all terms to the left:
8/3c-2-(2/4c-12)=0
Domain of the equation: 3c!=0
c!=0/3
c!=0
c∈R
Domain of the equation: 4c-12)!=0
c∈R
We get rid of parentheses
8/3c-2/4c+12-2=0
We calculate fractions
32c/12c^2+(-6c)/12c^2+12-2=0
We add all the numbers together, and all the variables
32c/12c^2+(-6c)/12c^2+10=0
We multiply all the terms by the denominator
32c+(-6c)+10*12c^2=0
Wy multiply elements
120c^2+32c+(-6c)=0
We get rid of parentheses
120c^2+32c-6c=0
We add all the numbers together, and all the variables
120c^2+26c=0
a = 120; b = 26; c = 0;
Δ = b2-4ac
Δ = 262-4·120·0
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{676}=26$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-26}{2*120}=\frac{-52}{240} =-13/60 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+26}{2*120}=\frac{0}{240} =0 $

See similar equations:

| 28=14x+3 | | 9+p=1+3p | | 8m+4=12+6m | | 5+10p=85 | | 7/8x-5=9 | | 3x+4+4=19+2x | | 2/3(2x+7)=2(2-4x)+10 | | -154=8-5b | | 14=-2+16r | | 4a+2=-10 | | 27=y-8 | | 1/2(8x-6)=6x-10= | | 3x/2+7=31 | | 3(v+4)=39 | | 2(t+4.4)=16 | | 5=8t-1.4t^2 | | 6y+30=4(y+7) | | .4x+6.9=5.5 | | 5p/7-10=30 | | x+(-8)=32 | | 8x=10=7x-1 | | 8(x+3)-2x=4-4(x+10 | | (4x+5)+(3x-11)+(2x-12)=180 | | 10=2(x+2 | | 28+5x=623 | | 32-9x+4=57 | | 7(6x-8)=42 | | 3v-10=2-(5v-12) | | x/5+11=19 | | 3=-2n-3 | | 1/(3n+2)+4/(n-2)=4 | | 11−c=−12 |

Equations solver categories