8/33c-2=2/3c-12

Simple and best practice solution for 8/33c-2=2/3c-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8/33c-2=2/3c-12 equation:



8/33c-2=2/3c-12
We move all terms to the left:
8/33c-2-(2/3c-12)=0
Domain of the equation: 33c!=0
c!=0/33
c!=0
c∈R
Domain of the equation: 3c-12)!=0
c∈R
We get rid of parentheses
8/33c-2/3c+12-2=0
We calculate fractions
24c/99c^2+(-66c)/99c^2+12-2=0
We add all the numbers together, and all the variables
24c/99c^2+(-66c)/99c^2+10=0
We multiply all the terms by the denominator
24c+(-66c)+10*99c^2=0
Wy multiply elements
990c^2+24c+(-66c)=0
We get rid of parentheses
990c^2+24c-66c=0
We add all the numbers together, and all the variables
990c^2-42c=0
a = 990; b = -42; c = 0;
Δ = b2-4ac
Δ = -422-4·990·0
Δ = 1764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$\sqrt{\Delta}=\sqrt{1764}=42$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-42)-42}{2*990}=\frac{0}{1980} =0 $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-42)+42}{2*990}=\frac{84}{1980} =7/165 $

See similar equations:

| x+5.86=9.2 | | 8=2x+4-1 | | x-4.6=11.2 | | 9x+4+3x=2(4x+12) | | 5y^-45=0 | | 10p=12p-48 | | -3x-2=-3x+2 | | (y+8)/6=y/2 | | 12=-2m+4+4 | | x-(-2=8 | | -24-a=7(4a-4)+4 | | -8(3-2r)=5(4r-1) | | 16n-40=4n=8 | | 5x/8-3x=-10 | | 3b-11=10-4b | | 10-5y+y=−130−65y+y=−6 | | 9x-1+11x+1=180 | | -2(7x-4)+2x=(x+4) | | x=1817 | | 2b-52=b-18 | | N-3(3-3n)=-39 | | x=1821 | | 67=3(1-8x)-8(1+6x) | | |2x-4|=|12+3x|+10 | | b/7-1=4 | | 5x+4=-x+7 | | 8(-2b+7)+3b=95 | | 3c-8=25 | | -3(1+2a)=-152 | | 4(-2)+5=x-1 | | 2x/3-x/4=15 | | x-x/6=60 |

Equations solver categories