8.3c-2=2/3c-12

Simple and best practice solution for 8.3c-2=2/3c-12 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8.3c-2=2/3c-12 equation:



8.3c-2=2/3c-12
We move all terms to the left:
8.3c-2-(2/3c-12)=0
Domain of the equation: 3c-12)!=0
c∈R
We get rid of parentheses
8.3c-2/3c+12-2=0
We multiply all the terms by the denominator
(8.3c)*3c+12*3c-2*3c-2=0
We add all the numbers together, and all the variables
(+8.3c)*3c+12*3c-2*3c-2=0
We multiply parentheses
24c^2+12*3c-2*3c-2=0
Wy multiply elements
24c^2+36c-6c-2=0
We add all the numbers together, and all the variables
24c^2+30c-2=0
a = 24; b = 30; c = -2;
Δ = b2-4ac
Δ = 302-4·24·(-2)
Δ = 1092
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1092}=\sqrt{4*273}=\sqrt{4}*\sqrt{273}=2\sqrt{273}$
$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(30)-2\sqrt{273}}{2*24}=\frac{-30-2\sqrt{273}}{48} $
$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(30)+2\sqrt{273}}{2*24}=\frac{-30+2\sqrt{273}}{48} $

See similar equations:

| 2+.15x=6x+104 | | 5.6+z=-2 | | 2(4x+2)+5(x+3)=58 | | 6|3x-10|=48 | | –9+k=–9−7k | | 4x+3+2=4x+2 | | 5u+6=–9+2u | | 2.08x^2-5.20x-3.12=0 | | F(x)=-3x^2-5x+13 | | 6x-13=2(x+4) | | 3y+18-9=6 | | 4f=–9+f | | 2/y+7=1/3-y | | 2x=293 | | (3x+7)+(2x+13)=180 | | 2v+5=3v | | 1/7x+8/7=1/6x+7/6+1 | | 5+2m=3(m+1) | | 3(2+5x)=-22+6x | | 6p-7=p2+1 | | 130+(2x+24)=180 | | -6(-8x+6=42x+30 | | 4n+8=4(-3n+2) | | 8=2x-2(2x-1) | | 50t+60t=400 | | (7x+10)+(6x-5)=180 | | 99=12x-x | | -3x+2(3/2x+4)=-1 | | (6x–5)–x=13–2(x+1) | | 8x=33/8 | | 4-5x–7=-5x–3 | | 2x=53/2 |

Equations solver categories