8.12p+6.83p+5.05=16.7p2+6.83p

Simple and best practice solution for 8.12p+6.83p+5.05=16.7p2+6.83p equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8.12p+6.83p+5.05=16.7p2+6.83p equation:



8.12p+6.83p+5.05=16.7p^2+6.83p
We move all terms to the left:
8.12p+6.83p+5.05-(16.7p^2+6.83p)=0
We add all the numbers together, and all the variables
14.95p-(16.7p^2+6.83p)+5.05=0
We get rid of parentheses
-16.7p^2+14.95p-6.83p+5.05=0
We add all the numbers together, and all the variables
-16.7p^2+8.12p+5.05=0
a = -16.7; b = 8.12; c = +5.05;
Δ = b2-4ac
Δ = 8.122-4·(-16.7)·5.05
Δ = 403.2744
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8.12)-\sqrt{403.2744}}{2*-16.7}=\frac{-8.12-\sqrt{403.2744}}{-33.4} $
$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8.12)+\sqrt{403.2744}}{2*-16.7}=\frac{-8.12+\sqrt{403.2744}}{-33.4} $

See similar equations:

| (x-19)x6=-102 | | t/6+42=39 | | 9+y^=(y-4)(y-1) | | 3(5y-4)+7=-2 | | M=8x+20 | | 152-y=274 | | (4+x)+(9+x)=35 | | -3z-7-4=20 | | 2(3y-4)=3(y-2^3 | | -7+10k=83 | | 5(t+4)-7=3 | | 4(k+11)=76 | | x-19(-6)=-102 | | x–5=10–x | | -6=y/4+6 | | 3(x-7)=7(x+1) | | 5x=21=15x-89 | | 6-4x=-36 | | -3/2(-1/3x+2)=-8 | | 2x-5(x-4)=-6+5x-38 | | 3/4(x+)=9 | | 3x-6=2x=2 | | 2x-5(x-4=-6+5x-38 | | -3(6x+5)=-69 | | -38=2-8(x+5) | | 5x=1=92 | | 40=2b+2(b+4) | | 4(-2x-10)-10=54 | | 14+4v=42 | | 0.001=x10 | | 14=4v=4 | | z/7-20=24 |

Equations solver categories