8-5(4-3x)=2(4-x)8x

Simple and best practice solution for 8-5(4-3x)=2(4-x)8x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8-5(4-3x)=2(4-x)8x equation:



8-5(4-3x)=2(4-x)8x
We move all terms to the left:
8-5(4-3x)-(2(4-x)8x)=0
We add all the numbers together, and all the variables
-5(-3x+4)-(2(-1x+4)8x)+8=0
We multiply parentheses
15x-(2(-1x+4)8x)-20+8=0
We calculate terms in parentheses: -(2(-1x+4)8x), so:
2(-1x+4)8x
We multiply parentheses
-16x^2+64x
Back to the equation:
-(-16x^2+64x)
We add all the numbers together, and all the variables
-(-16x^2+64x)+15x-12=0
We get rid of parentheses
16x^2-64x+15x-12=0
We add all the numbers together, and all the variables
16x^2-49x-12=0
a = 16; b = -49; c = -12;
Δ = b2-4ac
Δ = -492-4·16·(-12)
Δ = 3169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-49)-\sqrt{3169}}{2*16}=\frac{49-\sqrt{3169}}{32} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-49)+\sqrt{3169}}{2*16}=\frac{49+\sqrt{3169}}{32} $

See similar equations:

| 5n+3=2n+8 | | 18=42-4f | | 8x+2=4×(3x+5)+2 | | 5x=24=9x-17 | | 5(d+6)=35 | | 1.6=x | | 4(2r-1)=-2(3r-16) | | 86=58h+28 | | 3.6=x+2 | | 9(c+15)=18 | | 3-w=244 | | 3/5n+9/10=-1/5n-23/10  | | -a-18=a4-33 | | 36=10x+2 | | 66=4(2x-3 | | −12x+8x+5x=36 | | n/18-5=-2 | | a+25=51 | | 3(x–5)–x=2x+15. | | (x+20)(2x-28)=0 | | 8x-44=8x-44-8x-44 | | 8x-44=8x-44+8x-44 | | x/2-3x+2=0 | | -11x=−77 | | 63.7=50.8x+12.9 | | y+2/5=9/4 | | y+2/5=21/4 | | 5.1y+21.3=0.3-24.5 | | 10=7+y | | q/5=40 | | -35=x-4x+10(x=1)-2x-(x=1) | | b(50)=35.00-5 |

Equations solver categories