8-1/2x-1=4+x

Simple and best practice solution for 8-1/2x-1=4+x equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8-1/2x-1=4+x equation:



8-1/2x-1=4+x
We move all terms to the left:
8-1/2x-1-(4+x)=0
Domain of the equation: 2x!=0
x!=0/2
x!=0
x∈R
We add all the numbers together, and all the variables
-1/2x-(x+4)+8-1=0
We add all the numbers together, and all the variables
-1/2x-(x+4)+7=0
We get rid of parentheses
-1/2x-x-4+7=0
We multiply all the terms by the denominator
-x*2x-4*2x+7*2x-1=0
Wy multiply elements
-2x^2-8x+14x-1=0
We add all the numbers together, and all the variables
-2x^2+6x-1=0
a = -2; b = 6; c = -1;
Δ = b2-4ac
Δ = 62-4·(-2)·(-1)
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{7}}{2*-2}=\frac{-6-2\sqrt{7}}{-4} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{7}}{2*-2}=\frac{-6+2\sqrt{7}}{-4} $

See similar equations:

| 3(x-1/4)=13 | | 7m-12=40 | | 2x+40=35+x | | 5(x+3)+9=3(x+-2)+6 | | 28+2x+5=90 | | 5(3+5v)=65 | | 5x+4-3x-6=8 | | 24+8x=-4(-6-2x) | | 7z+1=7z-z | | 7+4t=-3+9t-6t | | -61-15x=39-20x | | -4x(9)=6x(-3) | | 17=3(2+4x)−(1−12x) | | x-3(7x+4+3(x+1)=-355 | | 6x+3−8x=13 | | 5(x-3)²=20 | | y+3.6=9.51 | | 1+14=-5(6x-3) | | 4x-5÷=3 | | 2x-6/3=16 | | 1/12+3/9y=5/12+5/8y | | -9h-3h+4=16 | | -1+3/5x=-3 | | 360=4g-75 | | 1/10(x+17)=2(2-x) | | (x+35)+(x-5)+1.4x+x=180 | | -5x+1=-2(4x+13) | | 80+4x-4+6x-6=180 | | 13+3x-14=5x-15 | | 110=3x+16 | | -14x+132=26x-468 | | 90+4x+41+5x+4=180 |

Equations solver categories