If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8+10x-3x^2=0
a = -3; b = 10; c = +8;
Δ = b2-4ac
Δ = 102-4·(-3)·8
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-14}{2*-3}=\frac{-24}{-6} =+4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+14}{2*-3}=\frac{4}{-6} =-2/3 $
| 5m^2=-9-4m | | 4•x=10 | | 1.989*10^30/5.972*10^24=y | | 5m^2+4m+9=0 | | x-8=x-(-1) | | 2.25/12=3/x | | (2x+10)=(3x+10) | | 2x+72=8x+6 | | 9x+37=5(x+5) | | (2x-4)+x=50 | | 7x(+)=77 | | 9x+37=5(×+5) | | 4=2v-v | | 5=5n+5+5n | | -v=-12+v | | 20-16y=-20-12y-20 | | 1+3u=13+4u | | 12,075=x+x(0.05)(3) | | -10+4n-8=7n+6 | | -7(u+7)=3u+1 | | 8+4v+9=v-7 | | -1-2c=-3c-10 | | 5s=-1+6s | | 9/25^3x=3125/243 | | -31=2(u-8)-5u | | (-15-x)=25x+250 | | 5y=-2.5 | | -8-2f=-3f | | 9/25^3x=243 | | 6w=8+8w | | 4v+9=2v-9 | | 6x2+12=0 |