8+1/3x+10=x+10+4

Simple and best practice solution for 8+1/3x+10=x+10+4 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8+1/3x+10=x+10+4 equation:



8+1/3x+10=x+10+4
We move all terms to the left:
8+1/3x+10-(x+10+4)=0
Domain of the equation: 3x!=0
x!=0/3
x!=0
x∈R
We add all the numbers together, and all the variables
1/3x-(x+14)+8+10=0
We add all the numbers together, and all the variables
1/3x-(x+14)+18=0
We get rid of parentheses
1/3x-x-14+18=0
We multiply all the terms by the denominator
-x*3x-14*3x+18*3x+1=0
Wy multiply elements
-3x^2-42x+54x+1=0
We add all the numbers together, and all the variables
-3x^2+12x+1=0
a = -3; b = 12; c = +1;
Δ = b2-4ac
Δ = 122-4·(-3)·1
Δ = 156
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{156}=\sqrt{4*39}=\sqrt{4}*\sqrt{39}=2\sqrt{39}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(12)-2\sqrt{39}}{2*-3}=\frac{-12-2\sqrt{39}}{-6} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(12)+2\sqrt{39}}{2*-3}=\frac{-12+2\sqrt{39}}{-6} $

See similar equations:

| 6+6q=-6-6q | | 24/n=15 | | 4-7v=-10-9v | | 12x+60=4x+216 | | 6-2p-4=-5p-4 | | 20+50x(2+20)=202 | | 1368/n=36 | | 1.4c-5.32+2.8c=0.3c-2.59 | | 7x-6(-4x)=5 | | 9+3w=-9+w | | 462/n=21 | | 7(-p=9) | | 220/n=10 | | -10-8y=-5y+10-7y | | T-5/6t=10 | | -7-8u=3-9u | | 8x+3x+8=90 | | 11-4y=-21 | | -8f+10-6f=-10f-10 | | 10–3y=4,U=N | | -8f+10-6f=-10f-20 | | 7b=-5+6b | | 11=p+6;p=6 | | 4d-7=8d+9 | | 3(x-1)=18-5x(3-5) | | 25=5x-15= | | (x^2)+(x+2)^2-3364=0 | | 8p+6=-7p+6 | | 60x+60=3 | | 10=4a=1 | | 3(2m-1)=4(3m-2) | | -9x-4=54 |

Equations solver categories