8(y-1)-3y=6y(2y-6)

Simple and best practice solution for 8(y-1)-3y=6y(2y-6) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(y-1)-3y=6y(2y-6) equation:



8(y-1)-3y=6y(2y-6)
We move all terms to the left:
8(y-1)-3y-(6y(2y-6))=0
We add all the numbers together, and all the variables
-3y+8(y-1)-(6y(2y-6))=0
We multiply parentheses
-3y+8y-(6y(2y-6))-8=0
We calculate terms in parentheses: -(6y(2y-6)), so:
6y(2y-6)
We multiply parentheses
12y^2-36y
Back to the equation:
-(12y^2-36y)
We add all the numbers together, and all the variables
5y-(12y^2-36y)-8=0
We get rid of parentheses
-12y^2+5y+36y-8=0
We add all the numbers together, and all the variables
-12y^2+41y-8=0
a = -12; b = 41; c = -8;
Δ = b2-4ac
Δ = 412-4·(-12)·(-8)
Δ = 1297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(41)-\sqrt{1297}}{2*-12}=\frac{-41-\sqrt{1297}}{-24} $
$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(41)+\sqrt{1297}}{2*-12}=\frac{-41+\sqrt{1297}}{-24} $

See similar equations:

| 5k-7+3=-24 | | 7f=8f-4 | | 3.5(5-t)=4.8t | | 6z+11=65 | | -2+2/3=m | | -3r+10=15r-6 | | x+64=3 | | 8x+9=7x-8=3x+5 | | 10n-17=-38 | | x+16=28-3x | | 5/3=x+7/3x | | n+29=23 | | 5k×-7+3=24 | | 4/5x-6=3 | | 6−3(2x−9)=39 | | 6x=9X=45 | | 5=5(2r-9) | | y+9=5(4y-2)y= | | -3-X=1-2x | | (x+3)/5=1 | | 4/9=n/39 | | 6x+29x-10=7(5x+8) | | 9m=56 | | 208=2x-3(-7x+15) | | -3.5+8.5x-4=2.6 | | (2x+5)/3=15 | | $3.00-y=$1.75 | | -5(-4x-6)=-90 | | .25x+20=30 | | 1.2(c-10)=54 | | x-1/3=-6/7 | | -3x=(1/3) |

Equations solver categories