8(x-3)+7=2x(4x-17)

Simple and best practice solution for 8(x-3)+7=2x(4x-17) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-3)+7=2x(4x-17) equation:



8(x-3)+7=2x(4x-17)
We move all terms to the left:
8(x-3)+7-(2x(4x-17))=0
We multiply parentheses
8x-(2x(4x-17))-24+7=0
We calculate terms in parentheses: -(2x(4x-17)), so:
2x(4x-17)
We multiply parentheses
8x^2-34x
Back to the equation:
-(8x^2-34x)
We add all the numbers together, and all the variables
8x-(8x^2-34x)-17=0
We get rid of parentheses
-8x^2+8x+34x-17=0
We add all the numbers together, and all the variables
-8x^2+42x-17=0
a = -8; b = 42; c = -17;
Δ = b2-4ac
Δ = 422-4·(-8)·(-17)
Δ = 1220
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1220}=\sqrt{4*305}=\sqrt{4}*\sqrt{305}=2\sqrt{305}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(42)-2\sqrt{305}}{2*-8}=\frac{-42-2\sqrt{305}}{-16} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(42)+2\sqrt{305}}{2*-8}=\frac{-42+2\sqrt{305}}{-16} $

See similar equations:

| 2(3x-4)=0.5(10-x) | | 24+2x=3x+8x | | 6n-2=6n+6 | | 0=-1(x-14) | | 1=7+x/4 | | 9(2m+3)=189 | | 14-8x=17-8x | | 5x-2x+4=40 | | +4n=26 | | 150m-125m+34125=35175-150m | | 8k+3k+12=78 | | -3x-11=-8 | | 3+5a=39+3a-7a | | 6z-9/8=-5 | | 5(a+3)-4=26 | | -60x+32=60x-32 | | -4/3w=10 | | 24+x=32 | | 3d+8-d=16 | | 5x+7=-5+2x+18 | | 4+8x=4-3x | | 5x-3-7=14-3x | | 34+40-x=3x=15 | | 8(3x-2)=4(7+-1) | | 0.12(6)+0.02=0.04(6+x) | | 3(3x+2)+5=56 | | 6€=€x | | k-13=-19 | | 7(2x-1)=119 | |  0.9=y+2.8 | | -4(2x-4)=2x-34 | | 140+.40x=80+.70x |

Equations solver categories