8(x-1)-2x=x(x+50)

Simple and best practice solution for 8(x-1)-2x=x(x+50) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x-1)-2x=x(x+50) equation:



8(x-1)-2x=x(x+50)
We move all terms to the left:
8(x-1)-2x-(x(x+50))=0
We add all the numbers together, and all the variables
-2x+8(x-1)-(x(x+50))=0
We multiply parentheses
-2x+8x-(x(x+50))-8=0
We calculate terms in parentheses: -(x(x+50)), so:
x(x+50)
We multiply parentheses
x^2+50x
Back to the equation:
-(x^2+50x)
We add all the numbers together, and all the variables
6x-(x^2+50x)-8=0
We get rid of parentheses
-x^2+6x-50x-8=0
We add all the numbers together, and all the variables
-1x^2-44x-8=0
a = -1; b = -44; c = -8;
Δ = b2-4ac
Δ = -442-4·(-1)·(-8)
Δ = 1904
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1904}=\sqrt{16*119}=\sqrt{16}*\sqrt{119}=4\sqrt{119}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-4\sqrt{119}}{2*-1}=\frac{44-4\sqrt{119}}{-2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+4\sqrt{119}}{2*-1}=\frac{44+4\sqrt{119}}{-2} $

See similar equations:

| -9h+15=42 | | x+8+4=84 | | 11x-5+7x-41=180 | | 34+x=268 | | 840=17(x+5) | | 2.5c=2 | | 3y+7-4y=12-3y+5 | | 4-y+y=14 | | 3x2-36=12x | | 2x+4-3x=8x-3 | | 1/2y-9/7=-4/5 | | 840=5​(x+17​) | | 10w=30+4w | | 78=-2(+3)+m | | 4x-36=36+11/3x | | 4x-5(-3x+19)=-228 | | 48=15x | | 8x2=32 | | -3x-9=27x-30x-54 | | 9+2q=8 | | 2(8)-q=11 | | 14x-17=8x-23 | | 8+2q=8 | | F(-1)=5x^2-2x-1 | | 2(7)-q=11 | | 7+2q=8 | | 2a-4=9 | | 2(6)-q=11 | | 1116=5(x+16) | | −5a=22 | | 54=7y=5 | | 5x+1=2x/3+4 |

Equations solver categories