8(x+2)3(x+3)=20

Simple and best practice solution for 8(x+2)3(x+3)=20 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 8(x+2)3(x+3)=20 equation:


Simplifying
8(x + 2) * 3(x + 3) = 20

Reorder the terms:
8(2 + x) * 3(x + 3) = 20

Reorder the terms:
8(2 + x) * 3(3 + x) = 20

Reorder the terms for easier multiplication:
8 * 3(2 + x)(3 + x) = 20

Multiply 8 * 3
24(2 + x)(3 + x) = 20

Multiply (2 + x) * (3 + x)
24(2(3 + x) + x(3 + x)) = 20
24((3 * 2 + x * 2) + x(3 + x)) = 20
24((6 + 2x) + x(3 + x)) = 20
24(6 + 2x + (3 * x + x * x)) = 20
24(6 + 2x + (3x + x2)) = 20

Combine like terms: 2x + 3x = 5x
24(6 + 5x + x2) = 20
(6 * 24 + 5x * 24 + x2 * 24) = 20
(144 + 120x + 24x2) = 20

Solving
144 + 120x + 24x2 = 20

Solving for variable 'x'.

Reorder the terms:
144 + -20 + 120x + 24x2 = 20 + -20

Combine like terms: 144 + -20 = 124
124 + 120x + 24x2 = 20 + -20

Combine like terms: 20 + -20 = 0
124 + 120x + 24x2 = 0

Factor out the Greatest Common Factor (GCF), '4'.
4(31 + 30x + 6x2) = 0

Ignore the factor 4.

Subproblem 1

Set the factor '(31 + 30x + 6x2)' equal to zero and attempt to solve: Simplifying 31 + 30x + 6x2 = 0 Solving 31 + 30x + 6x2 = 0 Begin completing the square. Divide all terms by 6 the coefficient of the squared term: Divide each side by '6'. 5.166666667 + 5x + x2 = 0 Move the constant term to the right: Add '-5.166666667' to each side of the equation. 5.166666667 + 5x + -5.166666667 + x2 = 0 + -5.166666667 Reorder the terms: 5.166666667 + -5.166666667 + 5x + x2 = 0 + -5.166666667 Combine like terms: 5.166666667 + -5.166666667 = 0.000000000 0.000000000 + 5x + x2 = 0 + -5.166666667 5x + x2 = 0 + -5.166666667 Combine like terms: 0 + -5.166666667 = -5.166666667 5x + x2 = -5.166666667 The x term is 5x. Take half its coefficient (2.5). Square it (6.25) and add it to both sides. Add '6.25' to each side of the equation. 5x + 6.25 + x2 = -5.166666667 + 6.25 Reorder the terms: 6.25 + 5x + x2 = -5.166666667 + 6.25 Combine like terms: -5.166666667 + 6.25 = 1.083333333 6.25 + 5x + x2 = 1.083333333 Factor a perfect square on the left side: (x + 2.5)(x + 2.5) = 1.083333333 Calculate the square root of the right side: 1.040833 Break this problem into two subproblems by setting (x + 2.5) equal to 1.040833 and -1.040833.

Subproblem 1

x + 2.5 = 1.040833 Simplifying x + 2.5 = 1.040833 Reorder the terms: 2.5 + x = 1.040833 Solving 2.5 + x = 1.040833 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.5' to each side of the equation. 2.5 + -2.5 + x = 1.040833 + -2.5 Combine like terms: 2.5 + -2.5 = 0.0 0.0 + x = 1.040833 + -2.5 x = 1.040833 + -2.5 Combine like terms: 1.040833 + -2.5 = -1.459167 x = -1.459167 Simplifying x = -1.459167

Subproblem 2

x + 2.5 = -1.040833 Simplifying x + 2.5 = -1.040833 Reorder the terms: 2.5 + x = -1.040833 Solving 2.5 + x = -1.040833 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-2.5' to each side of the equation. 2.5 + -2.5 + x = -1.040833 + -2.5 Combine like terms: 2.5 + -2.5 = 0.0 0.0 + x = -1.040833 + -2.5 x = -1.040833 + -2.5 Combine like terms: -1.040833 + -2.5 = -3.540833 x = -3.540833 Simplifying x = -3.540833

Solution

The solution to the problem is based on the solutions from the subproblems. x = {-1.459167, -3.540833}

Solution

x = {-1.459167, -3.540833}

See similar equations:

| 2c+5b=12 | | q^7+2=a^4 | | 2a^4+5=y | | 12x-8+2x-17=3x-4-8+74 | | X^2+y=xy | | 5k=p-a | | y+a=x | | a-b=c+d | | a-k=h | | 4x+36=86-8x | | a-m=n | | a+h=k | | a+b=k | | 4k+8=s^5 | | ln(y)=kt | | 20-(y-4)=3(y+4)-9(y+4) | | 3m=d+y | | 2+3x(x-1)=8 | | 10x+9=3+2 | | x^3-7x^2+10x+3=0 | | -7n-16=4n+14 | | 5d=4d-18 | | x^4+4x^2-28=0 | | 60-3x=58 | | 29-(3x+7)=2(x+5)+x | | -12=x^2-13x | | -6x+3x-15=-3 | | 5x-x-25=59 | | 7x-3x=-28 | | 8x-17=-49 | | 5x+14=-41 | | 3x+25=x-5 |

Equations solver categories