If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 8(4u + -1) * 12u = 11(2u + -6) * d Reorder the terms: 8(-1 + 4u) * 12u = 11(2u + -6) * d Reorder the terms for easier multiplication: 8 * 12u(-1 + 4u) = 11(2u + -6) * d Multiply 8 * 12 96u(-1 + 4u) = 11(2u + -6) * d (-1 * 96u + 4u * 96u) = 11(2u + -6) * d (-96u + 384u2) = 11(2u + -6) * d Reorder the terms: -96u + 384u2 = 11(-6 + 2u) * d Reorder the terms for easier multiplication: -96u + 384u2 = 11d(-6 + 2u) -96u + 384u2 = (-6 * 11d + 2u * 11d) -96u + 384u2 = (-66d + 22du) Solving -96u + 384u2 = -66d + 22du Solving for variable 'u'. Reorder the terms: 66d + -22du + -96u + 384u2 = -66d + 22du + 66d + -22du Reorder the terms: 66d + -22du + -96u + 384u2 = -66d + 66d + 22du + -22du Combine like terms: -66d + 66d = 0 66d + -22du + -96u + 384u2 = 0 + 22du + -22du 66d + -22du + -96u + 384u2 = 22du + -22du Combine like terms: 22du + -22du = 0 66d + -22du + -96u + 384u2 = 0 Factor out the Greatest Common Factor (GCF), '2'. 2(33d + -11du + -48u + 192u2) = 0 Ignore the factor 2.Subproblem 1
Set the factor '(33d + -11du + -48u + 192u2)' equal to zero and attempt to solve: Simplifying 33d + -11du + -48u + 192u2 = 0 Solving 33d + -11du + -48u + 192u2 = 0 The solution to this equation could not be determined. This subproblem is being ignored because a solution could not be determined. The solution to this equation could not be determined.
| 3x-0.02y=12 | | 2(h+8)-h=h+6 | | 7+11n-1=7n+22-4n | | 5(a+12)=4(a-3) | | 11x+1241y=100 | | 5a+20=4a+12 | | -4(4y-8)+2(3y+7)= | | 4-10y= | | 14+8t+13n-5t-3n-5= | | 18+(-x-2)-4(-9+3x)=-14 | | x+40+(5x+14)=180 | | -6(7x-2y+3z)= | | 3+3a+6+2a=a | | 3x+.5x=5x+32.5+4.5x | | 24-14-(-10)=n | | 17+(-12)-5=n | | 0.30x+0.30(70)=0.15(42) | | 14-(-11)= | | 11+x=8-3x | | 14+(-11)= | | 8s=9s+9 | | -9.8m+9.6+6.5m=-6.4-3.3m+16 | | 100-(-40)=b | | 8(7a+6)= | | 6x+2=9x+2 | | 5-(-2)+10=n | | 6a-(7)+4-(a)= | | 8+5v=3v | | (X^2)+3x+2=0 | | 0=x^4-6x^3+12x^2+6x-13 | | 34+535686543= | | (X-8)(X+1)=-18 |