If it's not what You are looking for type in the equation solver your own equation and let us solve it.
7y^2-10y+3=0
a = 7; b = -10; c = +3;
Δ = b2-4ac
Δ = -102-4·7·3
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-4}{2*7}=\frac{6}{14} =3/7 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+4}{2*7}=\frac{14}{14} =1 $
| 2x+x/2=270 | | 4x2+5=-9x | | 3+6y=-21 | | -5(-5b-8)=165 | | 2-j=1 | | 2/8x=7/12 | | 4x^+5=-9x | | -8(8b+5)=344 | | 2(v-3)=8 | | Q^2+9q+73=0 | | -2x=-14+10x+82 | | 3=r+5/2 | | 7+6z-4=8z+21-4z | | q+9q+73=0 | | 7-12=x-6+2^2 | | 2(j-6)=4 | | 8-13=x-2+3^2 | | 2x-20°=35° | | 3x6(1/5x-15)=15 | | X2-7x-30=0 | | 18y+145=37 | | 9=2t+6 | | 7(5-6x)=-91 | | y=(-3+1/3)+11 | | 2^(3x+5)=(1/16) | | 4=2s+4 | | 73+11+2x=180 | | 2(3x+5)=(1/16) | | X+x+150=610 | | y=(-3+(1/3))+11 | | (8x+8/3)(8x-1/8)=0 | | (x+5)^2=(1-x)(1+x)+24 |